В каких выделениях человека есть гиалуроновая кислота. Гиалуроновая кислота для лица: эффект, цена, противопоказания, показания, плюсы, минусы. Гиалуроновая кислота в организме человека

Гиалуронан представляет собой гликозаминогликан, который образует во внеклеточном матриксе огромные комплексы с протеогликанами. Особенно в большом количестве эти комплексы присутствуют в хрящевой ткани, где гиалуронан посредством линкерного белка связывается с протеогликаном агреканом

Гиалуронан несет сильный отрицательный заряд и поэтому во внеклеточном пространстве связывается с катионами и с молекулами воды. Это приводит к увеличению жесткости внеклеточного матрикса и создает между клетками водяную подушку, которая гасит силы сжатия

Гиалуронан состоит из повторяющихся единиц дисахаридов, связанных в длинные цепи

В отличие от других гликозаминогликанов, гиалуронановые цепи синтезируются на цитозольной поверхности плазматической мембраны и затем выходят из клетки

Клетки связываются с гиалуронанами с участием семейства рецепторов, известных под названием гиаладгерины, которые инициируют сигнальные процессы, контролирующие миграцию клеток и сборку цитоскелета

Гиалуронан (ГК), также известный под названием гиалуроновая кислота или гиалуронат, представляет собой глюкозаминогликан (ГАГ). В отличие от других гликозаминогликанов (ГАГ), связанных с внеклеточном матриксом, гиалуронан не связан ковалентной связью с протеогликанами сердцевинных белков, а образует очень большие комплексы с секретируемыми протеогликанами.

К числу таких наиболее важных комплексов относятся комплексы, присутствующие в хрящевой ткани, где молекулы ГК , секретируемые хондроцитами (хрящеобразующие клетки), связываются примерно со 100 копиями протеоглика-на агрекана. Агрекановые сердцевинные белки через небольшой линкерный белок связываются с одной молекулой ГК через 40-нм интервалы. Такие комплексы в длину могут достигать более 4 мм и обладать мол массой, превышающей 2 х 108 дальтон. Таким образом, с участием ГК во внеклеточном матриксе хрящевой ткани создаются большие гидратированные пространства.

Эти пространства играют особенно важную роль в тканях с низкой плотностью кровеносных сосудов, поскольку они обеспечивают диффузию питательных компонентов и выведение продуктов обмена из внеклеточного пространства.

Гиалуроновая кислота (ГК) обладают очень простой структурой. Подобно всем ГАГ, они являются линейными полимерами одного из дисахаридов, глюкуроновой кислоты, связанной с N-ацетилглюкозамином посредством (3 (1-3) связи. Как показано на рисунке ниже, молекулы ГК содержат в среднем 10 000 (и до 50 000 этих дисахаридов, связанных b(1-4) связью. Поскольку дисахариды несут отрицательный заряд, они связывают катионы и молекулы воды.

Подобно протеогликанам , ГК увеличивают жесткость внеклеточного матрикса и служат в качестве смазки в таких соединительнотканных структурах, как . Гидратированные молекулы ГК также образуют между клетками водяную подушку, которая позволяет тканям гасить силы сжатия.

CD44 образует гомодимеры или гетеродимеры с рецепторами Erb2.
Эти комплексы связываются с рядом сигнальных молекул,
которые контролируют организацию цитоскелета и экспрессию генов.

Молекулы гиалуроновой кислоты (ГК) гораздо крупнее, чем другие ГАГ. Из-за этого клетки должны расходовать на их формирование большие количества энергии. Подсчитано, что для формирования одной среднего размера цепи ГК, необходимо 50 000 эквивалентов АТФ, 20 000 кофакторов НАД и 10 000 групп ацетил-КоА. Поэтому в большинстве клеток синтез ГК находится под жестким контролем.

Синтез гиалуроновой кислоты (ГК) катализируется трансмембранными ферментами, ГК синтазами, локализованными в плазматической мембране. Эти ферменты несколько необычны в том смысле, что они собирают полимер ГК на цитозольной стороне плазматической мембраны, а затем переносят его через мембрану во внеклеточное пространство. Это принципиально отличается от синтеза других ГАГ, которые образуются в аппарате Гольджи и ковалентно связываются с протеогликанами сердцевинных белков по мере их прохождения по секреторному пути.

Важнейшим способом регуляции синтеза гиалуроновой кислоты (ГК) является изменение экспрессии ферментов, ГК синтаз. Экспрессия этих ферментов индуцируется специфичными для клеток факторами роста. Например, фактор роста фибробластов и интерлейкин-1 являются индукторами экспрессии ферментов в фибробластах, в то время как глюкокортикоиды подавляют экспрессию в этих же клетках. Эпидермальный фактор роста стимулирует экспрессию в кератиноцитах, но не в фибробластах. Секреция ГК контролируется независимо от их синтеза, и это обеспечивает, по крайней мере, два способа контроля уровня ГК в тканях.

Наряду с участием в гидратации тканей, гиалуроновая кислота (ГК) связывается со специфическими поверхностными рецепторами, что приводит к стимуляции внутриклеточных сигнальных путей, контролирующих такие процессы, как миграция клеток. Основным рецептором ГК является CD44, относящийся к семейству белков, называемых гиладгеринами, которые связываются с ГК. К остальным представителям этого семейства относятся протеогликаны (например, версикан, агрекан, бревикан) и линкерный белок, который связывает ГК с агреканом в хрящевой ткани. Множественные формы CD44 образуются при альтернативном сплайсинге транскриптов одного гена, хотя функциональные различия между этими изоформами остаются неясными.

CD44 существует в виде гомодимеров, которые экспрессируются во многих типах клеток или в виде гетеродимеров с ErbВ, тирозинкиназой, которая экспрессируется на эпителиальных клетках.

Цитоплазматический участок CD44 обладает несколькими функциями. Он необходим для правильного связывания с ГК и для сортинга рецепторов на клеточной поверхности. Он также участвует в процессах внутриклеточной передачи сигнала. Картирование функциональных областей в цитоплазматическом участке CD44 проводилось при изучении экспрессии мутантных форм CD44 в культуре клеток, и активации сигнальных путей после прикрепления клеток к ГК.

Из этих исследований мы знаем, что гомодимеры CD44 и гетеродимеры CD44/ErbB активируют нерецепторные тирозинкиназы, например Src, а также представителей семейства небольших G-белков, Ras. Эти киназы активируют такие сигнальные белки, как протеинкиназа С, МАР киназа и ядерные факторы транскрипции.

Наряду с этим, как показано на рисунке ниже, сигналы, передающиеся с участием CD44 , могут изменять сборку актинового цитоскелета у поверхности клеток. Это происходит при активации таких белков, связывающих актин, как фодрин и небольшого G-белка, Rac-1. Одним из последствий реорганизации актина является стимуляция миграции клеток под влиянием связывания CD44 с ГК. В опухолях усиление экспрессии CD44 и секреции ГК коррелирует с увеличением ее агрессивности, и является плохим прогностическим признаком.

Обычно считается, что гиалуроновая кислота (ГК ) играет двоякую роль в стимуляции миграции клеток. Во-первых, за счет связывания с внеклеточным матриксом ГК нарушает межклеточные взаимодействия и взаимодействие клеток с матриксом. Мыши, у которых не происходит экспрессии ГК, характеризуются незначительной величиной межклеточного пространства, вследствие чего животные не могут развиваться нормально. Поскольку ГК обладает большим гидратированным объемом, повышенная секреция ГК в опухоли нарушает целостность внеклеточного матрикса, что приводит к образованию больших промежутков, через которые могут мигрировать опухолевые клетки.

Во-вторых, при связывании ГК с рецепторами CD44 могут активироваться внутриклеточные процессы передачи сигналов, непосредственно приводящие к перегруппировкам цитоскелета и к активации миграции клеток. Это подтверждается данными, полученными в экспериментах по добавлению ГК к клеткам в культуре. Клетки, экспрессирующие CD44, начинают мигрировать сразу же после контакта с ГК, и соединения, разрушающие внутриклеточные сигнальные молекулы и связывающиеся с CD44, ингибируют эту миграцию.


Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Гиалуроновая кислота представляет собой полимерную молекулу, состоящую из небольших соединений углеводной структуры. Данное соединение было открыто около 75 лет назад, и до сей поры интенсивно изучается химиками, биологами, фармацевтами, врачами и учеными других медико-биологических специальностей. Физические свойства гиалуроновой кислоты уникальны – она способна удерживать молекулы воды , образуя гелеобразную структуру, и кроме того, данное соединение участвует во многих важных процессах в организме человека и животных, таких, как например деление и миграция клеток, переключение генов, заживление ран, оплодотворение, рост и развитие плода, формирование злокачественных опухолей и т.д.

В настоящее время гиалуроновая кислота широко применяется в эстетической медицине (входит в состав косметических продуктов, таких, как крема, маски и другие, а также используется для проведения процедуры биоревитализации и иных манипуляций, направленных на замедление процессов старения и поддержание молодости тканей). Кроме эстетической области, гиалуроновая кислота широко используется в медицинской практике, например, в лечении заболеваний глаз и суставов, в комплексной терапии злокачественных опухолей, в заживлении ран и в иммунологии. Рассмотрим свойства и применение гиалуроновой кислоты в различных сферах (и эстетической, и медицинской).

Гиалуроновая кислота – общая характеристика, свойства и способы получения

Гиалуроновая кислота представляет собой полисахарид, а это означает, что ее молекула состоит из множества одинаковых небольших фрагментов, которые по своей структуре являются углеводами (простыми сахаридами). Простые сахара соединяются в цепочку и образуют длинную молекулу гиалуроновой кислоты. В зависимости от количества фрагментов, составляющих молекулу гиалуроновой кислоты, она может иметь различную массу и длину.

На основании массы молекулы выделяют две разновидности гиалуроновой кислоты – высокомолекулярную и низкомолекулярную . Высокомолекулярными разновидностями гиалуроновой кислоты являются молекулы с массой более 300 кДа. Все молекулы гиалуроновой кислоты с массой менее 300 кДа относятся к низкомолекулярным. Обе разновидности вещества обладают рядом одинаковых свойств, но в то же время некоторые другие физические свойства и биологическая роль высокомолекулярной и низкомолекулярной гиалуроновой кислот различны.

Так, и высокомолекулярная, и низкомолекулярная гиалуроновая кислота способны связывать и удерживать молекулы воды, образуя желеобразную массу. Данная желеобразная масса обладает некоторой вязкостью, позволяющей ей выполнять функцию идеального субстрата для любых жидкостей и смазок в организме (например, слюны, вагинальной и суставной смазки, околоплодных вод и т.д.), а также для внеклеточного матрикса, в котором протекают биохимические реакции и проходят другие важные процессы. Степень вязкости желеобразной массы, образуемой гиалуроновой кислотой, зависит от ее массы. Чем больше молекулярная масса молекулы гиалуроновой кислоты, тем более вязким будет желеобразная масса, образуемая ей в соединении с водой.

Внеклеточный матрикс, образованный желеобразной массой воды, удерживаемой гиалуроновой кислотой, представляет собой уникальную среду, соединяющую клетки органов и систем между собой, а также обеспечивающую их взаимодействие. По межклеточному матриксу движутся клетки и биологически активные вещества, попав в него из кровеносных сосудов. Именно благодаря желеобразному вязкому матриксу различные вещества могут добираться до каждой клетки органа или ткани, даже если рядом с ней не проходит кровеносный сосуд. То есть, какое-либо вещество или клетка выходит из кровеносного сосуда в межклеточный матрикс и по нему проходит до клеточных структур, лежащих глубоко в тканях и не контактирующих с кровеносными сосудами.

Кроме того, продукты жизнедеятельности клеток, токсины вирусов и бактерий , а также погибшие клеточные структуры удаляются из органов и тканей именно через межклеточный матрикс. Сначала они попадают в межклеточное вещество, затем движутся по нему по направлению к лимфатическим или кровеносным сосудам, достигнув которых, проникают в них и окончательно выводятся из организма. Подобное движение между клетками в межклеточном матриксе возможно именно благодаря его желеобразной консистенции, обеспечиваемой гиалуроновой кислотой.

Помимо этого, гиалуроновая кислота является необходимым компонентом внутрисуставной смазки и глазной жидкости, а также входит в состав дермы и соединительной ткани. Данное соединение придает вязкость внутрисуставной смазке и глазной жидкости, обеспечивая их оптимальные свойства. В дерме гиалуроновая кислота удерживает волокна коллагена и эластина в правильном положении, тем самым поддерживая тургор, эластичность и молодость кожи . Кроме того, за счет связывания воды гиалуроновая кислота обеспечивает оптимальное количество влаги в кожном покрове, что также предотвращает старение и появление морщин . В соединительной ткани гиалуроновая кислота также обеспечивает ее тургор, эластичность, растяжимость и достаточную увлажненность.

При недостатке гиалуроновой кислоты происходит пересыхание тканей из-за дефицита воды, которая не удерживается в них. В результате ткани истончаются, становятся ломкими, неэластичными и легко ломающимися, что приводит к их старению и развитию различных заболеваний. Также гиалуроновая кислота принимает участие в ряде очень важных процессов, таких, как миграция и размножение клеток, переключение генов, зачатие и последующий рост плода, формирование злокачественных опухолей, развитие иммунного ответа и т.д. Таким образом, переоценить свойства гиалуроновой кислоты, необходимые для нормального функционирования органов и тканей на клеточном уровне, просто невозможно.

В организме человека с массой тела 70 кг постоянно имеется около 15 граммов гиалуроновой кислоты. Причем ежедневно примерно 1/3 от общего количества гиалуроновой кислоты, находящейся в различных органах и тканях, расщепляется и утилизируется, а вместо нее образуются новые молекулы. Время полужизни молекул гиалуроновой кислоты в составе суставной смазки составляет от 1 до 30 недель, в эпидермисе и дерме – 1 – 2 дня, а в крови – несколько минут. С возрастом организм теряет способность синтезировать гиалуроновую кислоту в необходимом количестве, вследствие чего начинается процесс старения. Именно поэтому для замедления старения людям зрелого возраста необходимо получать гиалуроновую кислоту извне, с продуктами питания или с биологически активными добавками (БАДами).

Для применения в медицине и эстетической индустрии гиалуроновую кислоту получают в промышленных масштабах из двух видов сырья:
1. Ткани позвоночных животных;
2. Бактерии, образующие защитную капсулу из молекул гиалуроновой кислоты (например, гемолитические стрептококки типов А и В).

Для получения гиалуроновой кислоты наиболее часто используют следующие ткани позвоночных животных, которые содержат наибольшие количества данного вещества:

  • Гребни петухов;
  • Стекловидное тело глаза;
  • Синовиальная жидкость суставов;
  • Гиалиновый хрящ;
  • Пупочный канатик;
  • Эпидермис и дерма кожи;
  • Амниотическая жидкость.
Оптимальным сырьем для получения гиалуроновой кислоты являются гребни половозрелых кур и петухов.

Бактерии для получения гиалуроновой кислоты используются следующим образом – необходимый штамм помещают на питательную среду и обеспечивают ему идеальные условия для размножения. Когда питательная среда становится вязкой, это означает, что бактерии выработали достаточно большое количество гиалуроновой кислоты, которую нужно только выделить и очистить от примесей.

Гиалуроновая кислота, выделяемая из животного сырья и бактерий, имеет существенный недостаток – она содержит примеси белков и пептидов , которые невозможно удалить полностью даже после специальной обработки. Данные белки и пептиды могут провоцировать аллергические реакции у людей, что суживает сферу применения гиалуроновой кислоты.

Готовая гиалуроновая кислота выпускается фармацевтическими заводами в виде порошков и гранул, содержащих молекулы с различной массой. Данные порошки используют для приготовления растворов, которые затем вносят в состав кремов, масок, лекарственных препаратов и т.д. Перед применением готовые растворы гиалуроновой кислоты стерилизуют в автоклавах.

Биологическая роль гиалуроновой кислоты

Гиалуроновая кислота является полисахаридом с высокой степенью гидратированности (связанности с водой) и входит в состав межклеточного матрикса, благодаря чему обладает весьма разнообразными функциями и принимает участие в процессах размножения, миграции, узнавания и дифференцировки клеток различных органов и тканей.

В зависимости от количества и размеров молекул гиалуроновой кислоты в межклеточном матриксе формируются гели различной степени вязкости, которые в дальнейшем определяют свойства и функции тканей, органов, систем. Так, гели, образованные гиалуроновой кислотой, определяют количество воды в ткани, интенсивность обмена ионами в клетках (калия, натрия, магния, цинка и др.), скорость транспорта различных биологически активных веществ и токсинов, непроницаемость среды для молекул крупного размера и клеток и т.д.

Способность гиалуроновой кислоты делать какой-либо участок гелевой среды межклеточного матрикса непроницаемым для крупных молекул обеспечивает тканям защиту от токсинов и проникновения микробов (бактерий, простейших и грибков).

Удержание большого количества воды гиалуроновой кислотой создает эффекты несжимаемости и набухания, на основе которых реализуется эффективное противостояние различным механическим воздействиям, направленным на сдавление тканей и органов. Благодаря этому органы и ткани сохраняют свою форму и не поддаются сдавливанию, а, следовательно, и травматизации. Именно благодаря этому эффекту гиалуроновой кислоты мы можем, например, сдавливать кожу пальцами, не повреждая ее структур.

Вязкость суставной жидкости, создаваемая гиалуроновой кислотой, позволяет ей выступать в роли смазки для трущихся хрящевых поверхностей двух сочленяющихся костей, а также уменьшать негативное воздействие избыточного давления .

Именно водный раствор гиалуроновой кислоты является наполнителем стекловидного тела глаза, а также составной частью других структур данного органа. Гиалуроновая кислота очень важна для нормальной работы глаза, поскольку ее растворы прозрачны и стабильны, что и создает необходимую среду для прохождения луча света на сетчатку без каких-либо искажений.

Гиалуроновая кислота играет огромную роль в оплодотворении яйцеклетки. Дело в том, что выходя из яичника в период овуляции , яйцеклетка покрыта двумя защищающими ее структурами, которые называются блестящая оболочка (zonapellucida) и лучистый венец (coronaradiata). И блестящая оболочка, и лучистый венец в межклеточном матриксе содержат большое количество гиалуроновой кислоты, благодаря которой они, собственно, и существуют. Яйцеклетка способна к оплодотворению только до тех пор, пока ее лучистая корона и блестящая оболочка полностью целы. Как только лучистая корона разрушится в маточной трубе , яйцеклетка потеряет способность к оплодотворению и погибнет. Таким образом, при недостатке гиалуроновой кислоты в организме даже здоровые и полноценные яйцеклетки могут быть бесполезными, поскольку они быстро погибают в маточной трубе, будучи не способными к оплодотворению сперматозоидами.

Кроме того, после оплодотворения остатки блестящей оболочки с гиалуроновой кислотой предотвращают прилипание уже плодного яйца к стенкам маточной трубы, что является механизмом профилактики внематочной беременности .

Гиалуроновая кислота также играет огромную роль в последующем после оплодотворения росте плода. Дело в том, что целые молекулы и фрагменты гиалуроновой кислоты запускают процесс деления, миграции и созревания клеток в плодном яйце, а также формирования из них органов и систем.

Внутри клеток гиалуроновая кислота принимает участие в процессе деления, то есть, необходима для размножения и образования новых клеточных элементов взамен старых или поврежденных. Благодаря этому эффекту гиалуроновая кислота стимулирует процесс восстановления повреждений в органах и тканях. Например, при переломах костей именно гиалуроновая кислота стимулирует быстрое срастание фрагментов. Стимуляция процессов репарации происходит не только за счет активации клеточного деления, но и за счет способности гиалуроновой кислоты активировать рост кровеносных сосудов, которые необходимы вновь формирующейся ткани. К сожалению, способность гиалуроновой кислоты стимулировать рост кровеносных сосудов может играть и негативную роль, например, при росте злокачественной опухоли. Ведь чем быстрее образуются новые сосуды, питающие опухоль, тем быстрее она увеличивается в размерах, и тем скорее дает метастазы.

Также гиалуроновая кислота является компонентом врожденного иммунитета , которым обладает каждый человек с момента рождения. В коже и соединительной ткани гиалуроновая кислота выполняет целый ряд очень важных функций благодаря тому, что поддерживает нити коллагена и эластина в нормальном положении и состоянии. Так, данная молекула защищает кожу, предотвращая проникновение патогенных микробов с ее поверхности вглубь при наличии повреждений (ранки, царапины и т.д.). Кроме того, гиалуроновая кислота поддерживает гидробаланс дермы и эпидермиса, уменьшая испарение воды и одновременно способствуя притягиванию и удержанию на поверхности кожи влаги из воздуха. Благодаря подобным свойствам гиалуроновая кислота увлажняет кожу, а также делает ее гладкой и эластичной, предотвращая повреждения, истончение и иссушение, и, тем самым, замедляя старение.

Обобщая вышесказанное, можно резюмировать, что все разновидности гиалуроновой кислоты обладают следующими свойствами:

  • Поддерживает и восстанавливает нормальную степень гидратации (увлажненности) кожного покрова;
  • Улучшает эластичность тканей, в том числе кожи;
  • Нормализует тонус тканей, в том числе кожи;
  • Улучшает микроциркуляцию;
  • Ускоряет процесс обновления клеток во всех тканях, в том числе в коже;
  • Купирует воспаление и устраняет отек кожи.
Однако описанные эффекты в полной мере присущи не всем разновидностям гиалуроновой кислоты. Так, высокомолекулярные виды гиалуроновой кислоты обладают одними эффектами, а низко- и среднемолекулярные – другими.

Низкомолекулярные разновидности гиалуроновой кислоты , имеющие массу менее 30 кДа, обладают следующими свойствами:

  • Проходят сквозь барьеры, образованные мембранами клеток, вследствие чего могут проникать с поверхности кожи в глубокие слои дермы;
  • Стимулируют рост лимфатических и кровеносных сосудов;
  • Улучшают микроциркуляцию и питание кожи.
Среднемолекулярные разновидности гиалуроновой кислоты , имеющие массу от 30 до 100 кДа, обладают следующими свойствами:
  • Ускоряют заживление ран;
  • Стимулируют деление клеток;
  • Ускоряют миграцию клеток в рану.
Высокомолекулярные разновидности гиалуроновой кислоты , имеющие массу молекул от 500 до 730 кДа, обладают следующими свойствами:
  • Подавляют деление и миграцию клеток в область повреждения;
  • Не проникают с поверхности кожи в глубокие слои;
  • Подавляют рост лимфатических и кровеносных сосудов;
  • Купируют воспаление;
  • Предотвращают разрушение хрящей.

Сферы применения гиалуроновой кислоты

Гиалуроновая кислота широко применяется в эстетической сфере и в прикладной медицине в таких областях, как офтальмология , артрология, в онкологии , в заживлении ран и в иммунологии. Рассмотрим способы применения гиалуроновой кислоты в различных сферах.

Гиалуроновая кислота в эстетической сфере

Современную эстетическую медицину и косметологию невозможно представить без гиалуроновой кислоты, поскольку она применяется очень широко. Так, в косметологии гиалуроновая кислота входит в состав различных кремов, сывороток, масок, гелей и других продуктов, предназначенных для увлажнения, омоложения или уменьшения выраженности возрастных изменений кожного покрова.

В эстетической медицине гиалуроновая кислота является наиболее популярным средством, применяющимся для омоложения кожи, а также устранения возрастных изменений и дефектов по типу "минус-ткань", возникших после хирургических вмешательств. Гиалуроновая кислота используется в инъекционных методиках омоложения, таких, как вживление филлеров, биоревитализация и мезотерапия. Широкое применение данного соединения в инъекционных методах эстетической медицины обусловлено рядом факторов: во-первых, введение гиалуроновой кислоты в кожу безопасно, поскольку аллергические реакции на препарат не возникают; во-вторых, имплантат из длинной молекулы "гиалуронки" сохраняется длительное время, то есть, эффект от произведенной процедуры держится от 1 до 1,5 лет. Наконец, инъекции гиалуроновой кислоты просты в производстве и безболезненны.

Таким образом, очевидно, что гиалуроновая кислота является очень важным компонентом современных косметических средств и необходимым веществом для целого ряда методов нехирургического омоложения кожи. Рассмотрим подробнее, каким образом гиалуроновая кислота применяется в косметических продуктах и используется в методах нехирургического омоложения кожи.

Инъекции с гиалуроновой кислотой (уколы гиалуроновой кислоты)

Под общим названием "инъекции гиалуроновой кислоты" обычно подразумевают несколько методов нехирургического омоложения кожи и устранения выраженности ее возрастных изменений, которые объединены общей сущностью их производства – введением препаратов "гиалуронки" в структуры кожного покрова методом уколов (инъекций). То есть, гиалуроновая кислота вводится в кожу методом инъекций обычным шприцем или специальным роллером. После инъекций гиалуроновой кислоты, произведенных любым методом, кожа человека разглаживается, морщины либо полностью исчезают, либо их выраженность становится меньшей, появляется тургор и устраняется дряблость, а также повышается степень увлажненности структур кожного покрова. Ведь старение кожи, появление морщин, дряблость, сухость и тусклость обусловлены именно дефицитом или уменьшением количества гиалуроновой кислоты в глубоких слоях кожи, и поэтому ее ведение является эффективным способом омоложения и устранения сухости.

К методам, объединенным общим названием "инъекции гиалуроновой кислоты", относят следующие процедуры:

  • Биоревитализация;
  • Биорепарация;
  • Контурная пластика филлерами.
Указанные процедуры "инъекций" отличаются друг от друга разновидностями применяемой для их производства гиалуроновой кислоты, техникой вколов, а также показаниями и противопоказаниями к применению.

Так, мезотерапия производится по принципу "редко, мало, в нужное место". То есть, гиалуроновую кислоту вводят в малых количествах только в те области, которые нуждаются в коррекции (например, в область морщин и т.д.). Кроме того, принцип "редко" означает, что инъекции производятся один раз в несколько дней. Мезотерапия имеет накопительный эффект из-за того, что гиалуроновая кислота вводится в малых количествах, и поэтому для получения хорошего результата необходимо произвести несколько инъекций в один и тот же участок. Эффект мезотерапии сохраняется в течение нескольких месяцев.

Биоревитализация производится при помощи тех же техник вколов (папульной, трассирующей, канальной), что и мезотерапия, но используются большие количества высокомолекулярной гиалуроновой кислоты. Поэтому биоревитализация производится за один раз. Данная процедура дает немедленные и отсроченные результаты. Немедленные результаты представляют собой разглаживание морщин, что заметно сразу после проведения процедуры. Однако данный немедленный эффект держится примерно 1 – 2 недели, после чего исчезает. Далее введенная в кожу гиалуроновая кислота разрушается специальными ферментами, и образуются короткие фрагментарные молекулы. Данные молекулы стимулируют выработку собственной гиалуроновой кислоты, коллагена и эластина, что и является основной целью процедуры биоревитализации, поскольку в результате данного процесса происходит реставрация и омоложение кожи. Именно реставрация структур стареющей кожи является отдаленным результатом биоревитализации, что проявляется улучшением тонуса, исчезновением дряблости, уменьшением количества и глубины морщин. Отдаленные результаты биоревитализации сохраняются в течение 1 – 1,5 лет.

Биорепарация представляет собой процедуру, аналогичную биоревитализации. Однако биорепарация отличается от биоревитализации тем, что для ее производства используются комплексные препараты, содержащие помимо гиалуроновой кислоты витамины , минералы и другие биологически активные вещества. В результате введения в структуры кожи гиалуроновой кислоты, витаминов и минералов достигается длительный и выраженный эффект омоложения, а также устраняются небольшие неровности и дефекты кожного покрова (например, шрамы, следы от прыщей и т.д.).

Контурная пластика филлерами представляет собой введение специальных длинных сшитых между собой нитей высокомолекулярной гиалуроновой кислоты в определенные участки кожи, которым требуется коррекция. Данные нити называются филлерами и располагаются на проблемных участках. Благодаря введению филлеров можно скорректировать линию скул, овал лица, устранить мешки под глазами и т.д.

Все методы инъекций гиалуроновой кислоты производятся под местным обезболиванием, поэтому сами процедуры безболезненные. Однако после того, как действие местного обезболивающего препарата закончится, возможны легкие болезненные ощущения в течение 2 – 4 дней, а также сохранение отека и покраснений на коже.

Увеличение губ гиалуроновой кислотой

Данная процедура является частным вариантом инъекций гиалуроновой кислоты, которые производятся в область контура губ. Когда гиалуроновая кислота в виде филлеров вводится в губы, она заполняет ткани и притягивает воду, что и приводит к увеличению их объема, а также делает контур более четким и красивым. В результате губы становятся более полными, пухлыми и гладкими с четким контуром, а также приобретают сочную окраску. Достигнутый результат сохраняется примерно 8 – 18 месяцев.

В ходе процедуры в губы вводится небольшой объем гиалуроновой кислоты путем точечных вколов. В зависимости от количества введенной гиалуроновой кислоты объем губ можно увеличить умеренно или существенно. Чем больше будет введено "гиалуронки", тем сильнее увеличится объем губ.

Сама процедура продолжается полчаса и проводится под местным обезболиванием, а полный результат формируется через двое суток. После увеличения губ гиалуроновой кислотой в течение 2 – 7 дней может сохраняться отек, покраснение и болевые ощущения, которые затем полностью проходят.

Гиалуроновая кислота под глаза

Гиалуроновая кислота может использоваться для устранения морщин и темных кругов под глазами, а также для придания тонкой коже данной области эластичности, упругости и повышения степени ее увлажненности. Гиалуроновая кислота под глаза может применяться как в виде инъекций, так и в составе специальных кремов, сывороток, гелей или муссов, содержащих ее в качестве активного компонента.

Показания и противопоказания для инъекций гиалуроновой кислоты (в том числе с целью увеличения губ)

Инъекции гиалуроновой кислоты различными методами показаны в следующих случаях:
  • Сухая и обезвоженная кожа;
  • Дряблая кожа на лице, животе, бедрах и плечах;
  • Морщинки в области глаз, овала лица и декольте;
  • Круги под глазами;
  • Тусклый и нездоровый цвет лица;
  • Расширенные поры на коже лица;
  • Повышенная выработка кожного сала;
  • Подтяжка овала лица;
  • Улучшение линии скул;
  • Устранение морщин;
  • Увеличение количества влаги в коже;
  • Повышение эластичности и тургора кож;
  • Нормализация рельефа кожи;
  • Увеличение объема и улучшение контура губ.
Инъекции гиалуроновой кислоты противопоказаны в следующих случаях:
  • Непереносимость или аллергические реакции на гиалуроновую кислоту;
  • Период беременности и кормления грудью ;
  • Острый период любых острых и инфекционных заболеваний;
  • Аутоиммунные заболевания;
  • Патология соединительной ткани;
  • Злокачественные опухоли;
  • Гипертоническая болезнь;
  • Склонность к образованию рубцов на коже;
  • Диабетическая ангиопатия ;
  • Нарушения свертывания крови;
  • Наличие воспалений или родинок в области предполагаемых вколов;
  • Заболевания кожи;
  • Прием препаратов, влияющих на свертываемость крови (антикоагулянтов , антиагрегантов и т.д.).

Препараты для инъекций гиалуроновой кислоты

В настоящее время для инъекций гиалуроновой кислоты используются разнообразные препараты, произведенные в разных странах и предназначенные для различных целей. Ниже в таблице мы приводим список основных высококачественных сертифицированных препаратов гиалуроновой кислоты с указанием показаний для их применения и длительностью достигнутого эффекта.
Препарат гиалуроновой кислоты Показания к применению препарата Длительность достигнутого эффекта
Varioderm Коррекция средних и глубоких морщин
Коррекция контура губ
6 – 12 месяцев
Varioderm Fineline Устранение поверхностных морщин
Коррекция "гусиных лапок"
Коррекция красной каймы губ
6 – 12 месяцев
Varioderm Plus Коррекция глубоких морщин
Коррекция овала лица
6 – 12 месяцев
Varioderm Subdermal Коррекция очень глубоких морщин
Увеличение объема тканей
6 – 12 месяцев
Hylaform (Hylan-B age) Коррекция формы губ
12 месяцев
Hyalite (Puragen) Коррекция формы губ
Устранение носогубных складок
12 месяцев
Teosyal Global Action Коррекция средних морщин 12 месяцев
Teosyal Deep Lines Коррекция глубоких морщин и складок кожи 12 месяцев
Teosyal Kiss Коррекция объема и контура губ 12 месяцев
Prevelle 3 – 6 месяцев
Captique Коррекция тонких и средних морщин 3 – 6 месяцев
Repleri Коррекция средних и глубоких морщин 12 – 18 месяцев
Juvederm Ultra 6 – 8 месяцев
Juvederm Ultra Plus Коррекция средних или глубоких морщин и складок 6 – 12 месяцев
Sirgiderm 18 Коррекция тонких морщин 6 месяцев
Sirgiderm 30 Устранение глубокой кожной депрессии
Восполнение дефицита объема тканей
9 месяцев
Sirgiderm 24 XP Устранение умеренной кожной депрессии
Коррекция контура губ
9 месяцев
Sirgiderm 30 XP Устранение глубокой и умеренной кожной депрессии
Восполнение дефицита объема тканей
Коррекция контура и формы губ
9 месяцев
Belotero Basic Устранение шрамов
Коррекция глубоких и средних морщин или борозд
Коррекция контуров лица
Увеличение объема и коррекция контура губ
6 – 9 месяцев
Belotero Soft Коррекция тонких поверхностных морщин 6 – 9 месяцев
Jolidermis 24 + Коррекция глубоких мимических морщин
Коррекция и восстановление контура губ
6 – 9 месяцев
Jolidermis 24 Коррекция средних и глубоких мимических морщин 6 – 9 месяцев
Jolidermis 18 Коррекция мелких морщин 6 – 9 месяцев
Restylane Коррекция умеренных морщин 6 – 12 месяцев
Restylane Lipp Увеличение объема губ
Коррекция красной каймы губ
6 – 12 месяцев
Restylane Perlane Коррекция глубоких складок
Коррекция овала лица
6 – 12 месяцев
Restylane SubQ Устранение возрастного дефицита объема тканей
Устранение асимметрии мягких тканей
12 – 18 месяцев
Restylane Touch Коррекция очень тонких морщин (в том числе в области орбиты глаза и рта) 6 месяцев
Эвгулон В Коррекция мелких и глубоких морщин и постакне 6 месяцев
Гиалуформ Коррекция тонких морщин 6 – 7 месяцев
Гиалуформ 1,8% Коррекция средних морщин и складок 8 – 9 месяцев
Гиалуформ 2,5% Устранение дефицита объема тканей 6 – 8 месяцев
Гиалрипайер-0,1 Коррекция мелких и глубоких морщин 10 – 14 месяцев

Гиалуроновая кислота до и после – фото


На данной фотографии изображен эффект, достигнутый инъекциями гиалуроновой кислоты, произведенными по методу биоревитализации.


На данной фотографии изображен эффект инъекций гиалуроновой кислоты препаратом Restilane.

Губы после гиалуроновой кислоты – фото



На данной фотографии изображен эффект увеличения объема губ при помощи гиалуроновой кислоты.

Крем, сыворотка и маски с гиалуроновой кислотой

Различные крема, маски, сыворотки и другие косметические продукты с гиалуроновой кислотой предназначены для наружного применения с целью увлажнения кожи, а также уменьшения степени выраженности возрастных изменений. Косметические средства с гиалуроновой кислотой подтягивают кожу, уменьшают ее дряблость, купероз и размер расширенных пор, а также выравнивают цвет лица и улучшают рельеф кожного покрова. Однако для того, чтобы получить видимый эффект от косметических средств с гиалуроновой кислотой, их необходимо применять регулярно минимум в течение месяца.

Выбирая косметическое средство, необходимо ориентироваться на количество и качество гиалуроновой кислоты в нем. Так, в сыворотках содержится наиболее высокая концентрация гиалуроновой кислоты, поэтому данные косметические средства рекомендуется выбирать для ухода за кожей, находящейся в плохом состоянии, а также для получения максимально быстрого эффекта. Сыворотки с гиалуроновой кислотой рекомендуется применять на начальном этапе, а затем переходить на использование кремов с гиалуроновой кислотой.

В кремах может содержаться высокомолекулярная или низкомолекулярная гиалуроновая кислота. Высомолекулярная гиалуроновая кислота в составе кремов покрывает кожу невидимой пленкой, из которой впитывается в верхние слои эпидермиса, делая его увлажненным, подтянутым, с ровным и сияющим цветом. Низкомолекулярная гиалуроновая кислота способна всасываться с поверхности в глубокие слои кожи, в которых стимулирует выработку коллагена и эластина, что приводит к более выраженному и стойкому эффекту. Однако крема, содержащие низкомолекулярную гиалуроновую кислоту, стоят гораздо дороже косметических средств с высокомолекулярной формой "гиалуронки". Поэтому для коррекции поверхностных возрастных изменений оптимально использовать крема с высокомолекулярной гиалуроновой кислотой. Соответственно, для коррекции и уменьшения выраженности глубоких возрастных изменений необходимо применять крема с низкомолекулярной гиалуроновой кислотой.

Маски с гиалуроновой кислотой применяются по тем же принципам, что и крема. Крема и сыворотки можно применять ежедневно, а маски – 1 – 2 раза в неделю. Все средства с гиалуроновой кислотой необходимо использовать только при плюсовой температуре, поскольку на морозе ее молекулы кристаллизуются и могут поранить кожу. Поэтому в зимнее время рекомендуется наносить средства с гиалуроновой кислотой только вечером, когда уже не планируется выход на улицу.

Однако необходимо помнить, что косметические средства с гиалуроновой кислотой не рекомендуется применять людям младше 25 лет, поскольку это может спровоцировать обратный эффект. Дело в том, что у молодых женщин кожа сама вырабатывает достаточное количество гиалуроновой кислоты и не нуждается в интенсивном уходе, а потому постоянное поступление данного вещества извне может привести к тому, что кожный покров перестанет ее вырабатывать. В результате наступит преждевременное старение кожи.

В настоящее время крема, сыворотки, маски и другие косметические средства выпускаются многими фирмами, поэтому приобрести их не составляет проблем. Одними из лучших косметических средств с гиалуроновой кислотой являются крема, маски, муссы и сыворотки, произведенные европейскими, азиатскими и американскими фирмами.

Препараты гиалуроновой кислоты для кожи лица: применение (инъекция), эффекты, возможные осложнения, рекомендации дерматокосметолога - видео

Кремы и инъекции с гиалуроновой кислотой: как они действуют, в каких случаях применяются - видео

Кремы для увлажнения сухой кожи: с гиалуроновой кислотой, с плёнкообразующими веществами, с гидроксикислотами - видео

В чем разница между эффектами от крема, сыворотки и уколов гиалуроновой кислоты (ответ косметолога) - видео

Гиалуроновая кислота для суставов

В здоровых суставах обязательно содержится небольшое количество жидкости, которая выполняет роль смазки. В этой жидкости имеется гиалуроновая кислота, которая придает ей необходимые свойства. При различных заболеваниях суставов концентрация гиалуроновой кислоты в суставной жидкости снижается в 2 – 4 раза. Поэтому в настоящее время успешно применяется метод лечения заболеваний суставов, заключающийся во введении высокомолекулярной гиалуроновой кислоты в его полость.

При введении гиалуроновой кислоты в сустав при остеоартрозах купируется болевой синдром и улучшается его функциональная активность, что позволяет человеку нормально двигаться и вести привычный образ жизни. Кроме того, применение гиалуроновой кислоты восстанавливает свойства внутрисуставной жидкости, подавляет воспалительный процесс и стимулирует восстановление нормальной структуры тканей.

В настоящее время при заболеваниях суставов применяют следующие препараты гиалуроновой кислоты:

  • Вискорнеал форто;
  • Вискосил;
  • Синвиск (Гилан G-F 20);
  • Синокром;
  • Суплазин;
  • Остенил.
Следует помнить, что чем больше молекулярная масса гиалуроновой кислоты, вводимой в сустав, тем длительнее терапевтический эффект. Поэтому для получения длительного лечебного действия необходимо выбирать препараты, содержащие гиалуроновую кислоту с наиболее высокой молекулярной массой.

Гиалуроновая кислота в офтальмологии

Препараты гиалуроновой кислоты широко применяются в местном и системном лечении заболевания глаз . Так, гиалуроновая кислота входит в состав глазных капель "искусственная слеза", предназначенных для лечения сухости роговицы. Также "гиалуронка" применяется для проведения хирургических операций на глазах с целью создания оптимальной операционной среды и предохранения тканей от случайных повреждений.

Гиалуроновая кислота в заживлении ран

Гиалуроновая кислота подавляет воспалительный процесс и активизирует процессы восстановления нормальной структуры тканей, благодаря чему успешно применяется в заживлении ран, ожогов и трофических язв . Для заживления ран гиалуроновую кислоту вводят в специальный перевязочный материал, которым покрывают различные повреждения кожного покрова, и периодически меняют повязки.

Биоэксплантаты с гиалуроновой кислотой (тонкая пленка) применяются для покрытия швов на кишечнике после произведенных оперативных вмешательств, что существенно ускоряет заживление раны и восстановление тканей. Кроме того, биоэксплантаты с гиалуроновой кислотой используются в ходе лапароскопических операций для покрытия петель кишечника с целью предупреждения их случайного травмирования.

Гиалуроновая кислота – отзывы

Большинство отзывов о гиалуроновой кислоте (от 85 до 90%) в косметических средствах являются положительными, что обусловлено видимым эстетическим эффектом. В отзывах указывается, что салонные процедуры с гиалуроновой кислотой весьма эффективно увлажняют кожу, делают ее более гладкой и упругой, вследствие чего мелкие морщинки разглаживаются, а новые не образуются. Кроме того, во многих отзывах указывается, что применение кремов с гиалуроновой кислотой приводит к тому же эффекту, что и салонные процедуры, но только медленнее. Если эффект от салонной процедуры заметен сразу, то при использовании кремов или масок он появляется только через месяц. 1

Дан краткий исторический очерк об открытии и комплексном изучении гиалуроновых кислот. В сравнительном плане проведена систематизация данных научной литературы по особенностям химического строения, физико-химических свойств, гистологической и цитологической принадлежности, функций и метаболизма гиалуроновых кислот у организмов различных таксономических групп. Выявлены особенности ферментного состава, обеспечивающие синтез и деградацию биополимера у микроорганизмов и в клетках тканей млекопитающих. Проанализированы традиционные технологии извлечения из животного сырья и способы его получения на основе культур Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus и Bacillus subtilis. Обоснована научно-техническая разработка инновационных биотехнологий гиалуроновых кислот различной молекулярной массы и перспективы их производственной реализации. Представлены сведения о применении продукции на их основе в различных сферах современной жизни.

гиалуроновая кислота

технологии микробного синтеза

биотехнология

бактерии

1. Белодед А. В. Микробиологический синтез и деградация гиалуроновой кислоты бактериями р. Streptococcus: Автореф. дис. канд. биол. наук: МГУПБ - М., 2008. - 23 с.

2. Бычков С.М., Колесников М.Ф. Способ получения гиалуроновой кислоты //A. с № 219752 СССР, 1968. - Бюл. № 19. - С. 90.

3. Забненкова О.В. Внутридермальные филлеры на основе гиалуроновой кислоты. Показания к применению, возможные комбинации // Пластическая хирургия и косметология: научно-практический журнал, 2010. - № 1 - С. 101-115. URL: http://www.pscj.ru/upload/iblock/569/11.pdf (дата обращения: 24.11.2016)

4. Костина Г., Радаева И. Использование гиалуроновой кислоты в медицине и косметологии // Косметика и медицина, 1999. - № 2-3. - С. 53-57.

5. Лупына Т. П., Волошина Е. С. Микробиологический способ получения гиалуроновой кислоты и перспективы её использования в фармацевтике. Национальный университет пищевых технологий, Украина. - 2014. - С. 4.

6. Препараты Princess filler и Princess volume в коррекции возрастных изменений лица и атрофических рубцов // Инъекционные методы в косметологии, 2013. - №2 /http://corneal.ru/events/publications/43/ (дата обращения:24.11.2016)

7. Португалова B.B., Ерзикян К.Л. Гиалуроновая кислота и ее роль в жизнедеятельности организмов // Успехи соврем. биол., 1986. - Т. 101, № 3. - С. 344-358.

8. Радаева И.Ф., Костина Г.А., Змиевский A.B. Гиалуроновая кислота: биологическая роль, строение, синтез, выделение, очистка и применение // Прикл. биохим. микробиол., 1997. - Т. 33, №2. - С. 133-137.

9. Ряшенцев В.Ю., Никольский С.Ф., Вайнермен Е.С. и др. Способ получения гиалуроновой кислоты // Патент № 2017751 РФ, 1994. - Бюл. № 15. - С. 75-76.

10. Толстых П.И., Стекольников Л.И., Рыльцев В.В. и др. Лекарственные препараты животного происхождения для наружного применения // Хим.-фарм. журн., 1991. - Т. 25, № 4. - С. 83-87

11. Филлеры: что это такое [Электронный ресурс] // Стоматология & косметология http://24stoma.ru/filleri.html (дата обращения: 24.11.2016 г.)

12. Abatangelo G., Martinelli M., Vecchia P. Healing of hyaluronic acid-enriched wounds:histological observations // J. Surg. Res., 1983. - V. 35, № 5. - P. 410-416.

13. Ahmet Tezel & Clenn H. Fredrickon Дермальные филлеры на основе гиалуроновой кислоты: взгляд с позиции науки [Калифорнийский университет, Санта-Барбара, США] [Электронный ресурс] // SKIN AESTHETIC http://estetika.uz/upload/files/da25b536d87b2edf853c5bc5d10f2968.pdf (дата обращения: 24.11.2016)

14. Carter G.R. Pasteurellosis: Pasteurella multocida and Pasteurella hemolytica. // Adv. Vet. Sci., 1967. - V. 11. - P. 321-379.

15. DeAngelis P.L., Jing W., Graves M.V., Burbank D.E., van Etten J.L. Hyaluronan synthase оf chlorella virus PBCV-1 // Science, 1997. - V. 278. - P. 1800-1803.

16. DeAngelis P.L., Papaconstantinou J., Weigel P.H. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria // J. Biol. Chem, 1993. - V. 268. - P. 14568-14571.

17. Frost G.I., Csoka Т., Stern R. The hyaluronidases: a chemical, biological and clinical overview // Trends Glycosci. Glycotech., 1996. - V. 8. - P. 419-434.

18. Graves M.V., Burbank D.E., Roth R., Heuser J., DeAngelis P.L., van Etten J.L. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae // Virology, 1999. - V. 257. - P.15-23.

19. Karlstam В., Vincent J., Johansson В., Bryno C. A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes // Prep. Biochem., 1991. - V. 21. - P. 237-256.

20. Kendall F.E., Heidelberger M., Dawson M.H. A serologically inactive polysaccharide elaborated by mucoid strains of group A hemolytic Streptococcus. // J. Biol. Chem., 1937. - V. 118. - P. 61-69.

21. Kim J.H., Yoo S.J., Oh D.K., Kweon Y.G. et al. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. // Enzyme Microb. Technol., 1996. - V. 19. - P. 440-445.

22. Lansing M., Lellig S., Mausolf A., Martini I., Crescenzi F., Oregon M., Prehm P. Hyaluronate synthase: cloning and sequencing of the gene from Streptococcus sp. // Biochem. J., 1993. -V. 289. - P. 179-184.

23. Linker A., Meyer K. Production of Unsaturated Uronides by Bacterial Hyaluronidases //Nature, 1954. - V. 174. - P. 1192-1194.

24. Matsubara C, Kajiwara M., Akasaka H., Haze S. Carbon-13 nuclear magnetic resonance studies on the biosynthesis of hyaluronic acid // Chem. Pharm. Bull., 1991. - V. 39. - P. 2446-2448.

25. Meyer K. Highly viscous sodium hyaluronate // J. Biol. Chem., 1948. - V. 176. - № 2. - P. 993-997.

26. Meyer K. Hyaluronidases // The Enzymes. - V. 5. / ed. Boyer P.D. - New York: Academic Press, 1971. - P . 307-320.

27. Meyer K., Palmer J. The polysaccharide of the vitreous humor // J. Biol. Chem., 1934. -V. 107. - P. 629-634.

28. Mortimer E.A., Vastine E.L. Production of Capsular Polysaccharide (Hyaluronic Acid)by L Colonies of Group A Streptococci. // J. Bacteriol., 1967. - V. 94, № 1. - P. 268-271.

29. Prehm P. Hyaluronan. // Biopolymers: biology, chemistry, biotechnology, applications. -V. 5: Polysaccharides I. Polysaccharides from prokaryotes. / eds. Vandamme E.J., DeBaets S.,Steinbuchel A. - Weinheim: Wiley-VCH, 2000. - P. 379-404.

30. Prehm P. Synthesis of hyaluronate in differentiated teratocarcinoma cells: characterization of the synthase. // Biochem. J., 1983. - V. 211. - P. 181-189.

31. Roseman S., Moses F.E., Ludowieg J., Dorfman A. The biosynthesis of hyaluronic acidby group A Streptococcus. Utilization of l-C14-glucose // J. Biol. Chem., 1953. - V. 203. - P.213-225.

32. Scott J.E., Cummings C, Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer // Biochem. J., 1991. - V.274. - P. 699-705.

33. Shimada Е., Matsumura G.J. Molecular Weight of Hyaluronic Acid from Rabbit Skin //J. Biochem., 1977. - V. 81. - № l. - P. 79-91.

34. Stern R., Asari A.A., Sugahara K.N. Hyaluronan fragments: an information-rich system // Eur. J. Cell Biol., 2006. - V. 85. - P. 699-715.

35. Sugahara K., Schwartz N.B., Dorfman A. Biosynthesis of Hyaluronic Acid by Streptococcus // J. Biol. Chem., 1979. - V. 254, № 14. - P. 6252-6261.

36. Weigel P.H., Hascall V.C., Tammi M. Hyaluronan Synthases // J. Biol. Chem., 1997. - V. 272, № 22. - P. 13997-14000.

37. Widner В., Behr R., Von Dollen S., Tang M., Ней Т., Sloma A., Sternberg D., DeAngelis P.L., Weigel P.H., Brown S. Hyaluronic Acid Production in Bacillus subtilis // Appl. Environ. Microbiol., 2005. - V. 71, № 7. - P. 3747-3752.

A DESCRIPTION OF DIFFERENT METHODS USED TO OBTAIN HYALURONIC ACID

Savoskin O. V. 1 Semyonova E. F. 1 Rashevskaya E. Yu. 1 Polyakova A. A. 1 Grybkova E. A. 1 Agabalaeva K. O. 1 Moiseeva I. Ya. 1

1 Penza State University

Abstract:

The article gives a brief historical outline of the discovery and comprehensive study of hyaluronic acids. We compare and systematize scientific papers focusing on the specific features of functions, metabolism, chemical constitution, physical, chemical, histological and cytological properties of hyaluronic acids in organisms belonging to different taxonomic groups. We also reveal the specific features of enzyme composition that ensure the synthesis and degradation of biopolymers in microorganisms and mammals’ tissue cells. In addition, we analyze traditional extraction technologies used with animal-based raw materials and ways of obtaining them from Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus and Bacillus subtilis. Furthermore, we present the grounds for the scientific and technical development of innovative biotechnologies related to hyaluronic acids with different molecular weight and their production prospects. Finally, we give information about how hyaluronic acid-based goods are used in different spheres of modern life.

Keywords:

technologies of microbial synthesis

В последние годы медицина, фармацевтика и косметология далеко шагнули в вопросе использования высокомолекулярных соединений (ВМС), в качестве основных действующих, а также вспомогательных, корригирующих веществ и наполнителей. Одним из наиболее востребованных в медицине и косметологии ВМС на сегодняшний момент, является гиалуроновая кислота (ГК), которая нашла свое применения в хирургии, как заменитель синовиальной жидкости в суставах в качестве смазывающего и хондропротекторного компонента; дерматологии, в качестве ремоделирующего агента при коррекции возрастных деформаций кожи лица, особенно кожи вокруг глаз; гинекологии, в качестве противоспаечного средства при внутривлагалищных сращениях. Таким образом, спектр применения гиалуроновой кислоты весьма широк; он постоянно пополняется, что приводит к повышению спроса на данный вид биополимера, а, следовательно, интересу к альтернативным источникам его получения.

1. История открытия гиалуроновой кислоты

В 1934 г. в журнале Journal of Biological Chemistry была опубликована статья Карла Маера и Джона Палмера, в которой упоминался необычный полисахарид, выделенный из стекловидного тела бычьего глаза (от греч. hyalos — стекловидный и англ. uronic acid - уроновая кислота), достаточно высокой молекулярной массы 450 г/моль и не содержащий сульфатных групп . Дальнейшие исследования показали, что полисахарид представлен фрагментами дисахарида, который состоит из D-глюкуроновой кислоты и N-ацетилировананного глюкозоамина.

Данные о принадлежности биополимера только структурам организмов млекопитающих опровергли, когда в 1937 г. Кендал и Хейдельбергер заявили о выделении полисахарида идентичного гиалуронану из культуральной жидкости гемолитического стрептококка. Идентичность выделенного биополимера подтвердилась ими же позже после установления структуры полисахарида в 60-е годы . В 1954 г. в журнале Nature руководитель лаборатории Meyer опубликовал структурную формулу фрагмента дисахарида, продукта расщепления стрептококковой гиалуронатлиазой .

Научный интерес к гиалуроновой кислоте, ее получению, выделению и применению все больше увеличивался. К настоящему времени опубликовано более 15000 статей в зарубежных и отечественных журналах. Результатом исследований было получение достоверных данных о выделении гиалуронана из различных органов млекопитающих, а также из культур различных клеток (гемолитический стрептококк, стрептомицеты, коринебактерии). Некоторые данные имели промышленное значение, например, экстракция гиалуроновой кислоты из гребней кур используется и сейчас. За полвека увеличился и спектр применения гиалуронана (хирургия, косметология, травматология и ортопедия, дерматология и др.), а также были созданы новейшие лекарственные формы на основе его полимерной структуры . Все это не было возможно без установления биологической роли биополимера, который, как оказалось, служил компонентом клеточного матрикса, необходимого для нормального осуществления метаболических процессов пролиферации и дифференциации тканей. Так был изучен процесс метаболизма гиалуронана в организме человека. Стало известно, что в день распадается и синтезируется около 5 г гиалуроновой кислоты, а ее содержание в теле человека составляет примерно 0,007%, что составляет около 15 г у женщины массой 70 кг .

В 1953 г. Роземан, Мозес и Дорфман опубликовали работы, где был указан способ получения гиалуронана, его осаждения и выделения в свободном виде на основе культур гемолитического стрептококка. В дальнейшем их методы выделения и осаждения были усовершенствованы Цифонелли и Маедо, что позволило повысить выход и чистоту продукта . Механизм образования гиалуронана в бактериях, в том числе стрептококков, был выявлен позже, когда был исследован ферментный состав микроорганизмов, способных к синтезу гиалуроновой кислоты. В 1959 г. было доказано существование специфических пептидов гиалуронатсинтетаз, которые осуществляют синтез полисахарида в мембранах бактерий .

В 1992 г. американские ученые заявили о клонировании гена, отвечающего за синтез гиалуронатсинтетазы, и передаче его штамму кишечной палочки. Однако активного фермента получить не смогли. ДеАнгелис в 2002 г. сообщил об успешном выделении оперона гиалуронатсинтетазы и экспрессии его в микроорганизм. Это был первый случай клонирования глюкозоаминогликансинтетаз в мировой практике .

В настоящее время в мире проводятся исследования механизмов действия гиалуроновых кислот, их роли в организме человека и альтернативных путей использования. Однако, особенно актуальными являются вопросы микробного синтеза гиалуронана, что подтверждает цена за килограмм очищенного продукта, составляющая около 700000 т. руб. (импортируемый продукт на основе животного сырья). Так, за последние 20 лет в мире было выдано более 50 патентов, что свидетельствует о высоком интересе к рассматриваемой проблеме.

2. Химическое строение и физические свойства гиалуроновой кислоты

Около 20 лет с момента первой публикации об открытии животного полисахарида гиалуроновой кислоты (1934 г.) понадобилось лаборатории Meyer, для установления точного химического строения гиалуроновой кислоты. Гиалуроновая кислота, гиалуронат или гиалуронан - (C14H21NO11)n - органическое соединение, относящееся к группе несульфатированных глюкозоаминогликанов (рис. 1). Наличие многочисленных сульфатированных групп у родственных глюкозоаминогликанов является причиной многочисленной изомерии, чего не наблюдается у гиалуроновой кислоты, которая всегда химически идентична, в независимости от методов и источников получения. Молекула гиалуроновой кислоты построена из повторяющихся фрагментов D-глюкуроновой кислоты и N-ацетил-D-глюкозоамина, соединенных β-(1-3)гликозидной связью. Основы фрагментов сахаров - это глюкопиранозное кольцо с различными заместителями (ацетамидная группа, гидроксильные и карбоксильные функциональные группы).

Рис. 1. Химическая формула гиалуроновой кислоты

Для молекулы гиалуроновой кислоты характерно образование большого количества водородных связей как внутри молекулы, так и между соседними углеводными остатками, находящимися на значительном друг от друга расстоянии, а в водном растворе даже между соседними молекулами через карбоксил и ацетамидную группу. Имеет кислую реакцию среды ввиду наличия непротонированной карбоксильной группы. Кислотные свойства гиалуроната позволяют получать растворимые в воде соли с щелочными металлами. Гиалуроновая кислота - это анионный линейный полисахарид с различной молекулярной массой 105-107Да. Молекулярная масса зависит от способа получения, причем, ввиду отсутствия изомерии, получаемый гиалуронат всегда химически идентичен стандартному.

Растворы гиалуроновой кислоты 1-4% образуют псевдогели. В водной среде сила кислотности карбоксильной группы (pK) составляет порядка 3-4, поэтому, для сохранения электронейтральности в растворе, молекулу окружают положительно заряженные катионы металлов, Na+, K+, Мg2+ и Ca2+, что приводит к формированию прочной гелевой структуры с большим содержанием воды. С тяжелыми металлами и красителями дает нерастворимые в воде комплексы. Кроме того, гиалуронат специфически реагирует с белками и в результате дает нам сложные гелеобразные комплексы, нередко выпадающие в осадок .

В водном растворе гиалуроновая кислота имеет достаточно большие значения продольного размера полисахаридной цепи - примерно 1 нм, поэтому, находясь в организме млекопитающих, гиалуроновая кислота принимает наиболее компактную форму. Посредством рентгеноструктурного анализа, выяснено, что гиалуронат может формировать левую ординарную и двойную спирали, различные многонитевые плоские структуры, а также сверхспирализованные структуры с вариациями концентраций в различных частях цепи, формирующие плотную молекулярную сетку, что и составляет вторичную структуру полисахарида. Это, в основном, обусловливается образованием водородных связей, связыванием с катионами щелочных металлов и гидрофобными взаимодействиями. Третичная структура гиалуроновой кислоты - это сетка, обладающая высокими реологическими свойствами (домены отталкиваются друг от друга), способная поглощать значительное количество воды и электролитов, а также большие молекулы белков, однако точно определенного размера пор третичная структура не образует. Сети имеют весьма четкую упорядоченность, ввиду наличия электронных эффектов по функциональным группам и по заместителям. При этом молекула принимает наиболее энергетически выгодное положение, которое также зависит от ионного окружения .

3. Гиалуроновая кислота в природе, функции гиалуроната в зависимости от гистологической и цитологической принадлежности у различных организмов

Наличие гиалуронатсинтетаз и гиалуроновых кислот в капсулах вирусов и бактерий родов Streptococcus можно объяснить, как адаптативное эволюционное приспособление, которое бактерии и вирусы позаимствовали у высших животных, тем самым увеличив свою способность преодолевать иммунный ответ хозяина.

3.1 Гиалуроновая кислота в тканях млекопитающих

Гиалуронат - основной компонент межклеточного матрикса различных тканей млекопитающих, однако распределен неравномерно. Так, например, максимальная концентрация содержания гиалуроновой кислоты в теле человека наблюдается в синовиальной жидкости, пупочном канатике, стекловидном теле глаза и коже .

В коже глюкозоаминогликан содержится в интерстициальном пространстве и выполняет ряд функций: удерживает воду, тем самым поддерживает естественную эластичность и объём кожи, что так важно при воспалительных реакциях; участвует в процессах пролиферации и дифференциации кератиноцитов и иммунокомпетентных клеток, тем самым играет роль в поддержании нормального процесса роста и регенерации кожных покровов и осуществлении местного иммунитета, укрепляет волокна коллагена (рис. 2); служит естественным барьером, защищающим от действия свободных радикалов, болезнетворных агентов и химических веществ .

Рис. 2. Воздействие гиалуроновой кислоты на коллагеновые волокна.

При недостатке естественной гиалуроновой кислоты, например, при старении или заболеваниях кожи, развиваются дегенеративные нарушения: снижается местный иммунитет, ранозаживляющая способность, эластичность кожи, что ведёт к возникновению морщин. В хрящевой ткани ГК выполняет функцию структурного элемента матрикса, необходимого для связывания и удержания хондроитинсульфатпротеогликана для укрепления коллагенового каркаса хряща . В синовиальной жидкости гиалуронат обеспечивает смазку для подвижных частей сустава, уменьшая их износ. При воспалительных заболеваниях суставов (артритах), снижается количество гиалуроновой кислоты, уменьшается вязкость синовиальной жидкости, что ведет к ухудшению движения. Также гиалуроновая кислота играет важную роль в эмбриогенезе, является передатчиком сигналов клеточной подвижности.

Таким образом, функции гиалуроната весьма обширны, и по мере дальнейшего расширения сферы изучения ее свойств, будут открываться все новые факты о роли глюкозоаминогликана в организме человека и млекопитающих .

3.2 Гиалуроновая кислота как компонент капсул бактерий

4. Метаболизм гиалуроновой кислоты

Синтез гиалуроновой кислоты достаточно хорошо изучен. Для млекопитающих и бактерий родов Streptococcus и Pasteurella биохимия процесса принципиально не отличается. Для синтеза гиалуроновой кислоты необходимы компоненты полимера: глюкуроновая кислота и N-ацетилглюкозамин. Глюкуроновая кислота синтезируется посредством ряда ферментативных реакций из глюкозо-6-фосфата (рис. 3).

Рис. 3. Схема синтеза глюкозоаминогликанов

Глюкозо-6-фосфат под действием фермента α-фосфоглюкомутазы изомеризуется в глюкозо-1-фосфат. Далее фермент УДФ-глюкозопирофосфорилазы катализирует образование УДФ-глюкозы из уридиндифосфата и глюкозы. После происходит ферментзависимое окисление гидроксогрупп УДФ-глюкозы под действием фермента УДФ-глюкозодегидрогеназы. Результат - образование глюкуроновой кислоты.

N-ацетилглюкозамин синтезируется из фруктозо-6-фосфата. При биосинтезе аминосахара происходит перенос аминогруппы на фруктозо-6-фосфат. Донор аминогруппы - глютамин, фермент амидотранфераза. Результат - образование глюкозамина-6-фосфата, который изомеризируется мутазой в глюкозамин-1-фосфат, который подвергается ацетилированию при участии фермента ацетилтрансферазы в присутствии КoA до N-ацетилглюкозамин-1-фосфата, который необходимо активировать пирофосфорилазой до УДФ-N-ацетилглюкозамин-1-фосфата. Это энергозатратный процесс.

Последней стадией синтеза гиалуроновой кислоты будет осуществление гликозидтрансферазной реакции при помощи единственного фермента гиалуронатсинтетазы. Этот процесс также происходит с затратой энергии АТФ (на синтез 1 моля гиалуроната расходуется 2 моль АТФ) .

4.1. Гиалуронатсинтетазы: строение, функции, локализация, кинетические характеристики и механизмы катализа

Гиалуронатсинтетаза - металлопротеин молекулярной массы 49 кДа, фермент, требующий катионы металлов для координации с фосфатными группами (активации) и использующий глюкозидфосфаты в качестве субстратов. Является единственным в своем роде ферментом, катализирующим синтез гиалуроновой кислоты в организме млекопитающих и в клеточной стенке гемолитического стрептококка, а также у вируса PBCV-1 и бактерии Pasteurella multicida . Исследования, проведенные в 50-е годы, в лаборатории Meyer позволили установить характерные особенности фермента гиалуронатсинтетазы: функционирует при нейтральных значениях pH, для катализа требует активированные посредством конъюгации с уридиндифосфатом глюкуроновую кислоту и N-ацетилглюкозамин, а также присутствие катионов Mg2+ и Mn2+ для координирования фосфатных групп. Фермент проявляет высокую активность в присутствии кардиопина (находится в комплексе). Тип 1 был изучен в 1983-1998 г. Prehm и Asplund, характерен для гемолитического стрептококка млекопитающих: гиалуронатсинтетаза синтезирует гиалуроновую кислоту посредством присоединения углеродных остатков к восстанавливающему концу гиалуроната, при этом чередуются β(1-3) и (1-4)гликозидные связи .

4.2. Ферменты, осуществляющие деполимеризацию гиалуроновой кислоты

Катаболические реакции гиалуроновой кислоты основаны на ферментативном катализе посредством гиалуронатлитических ферментов. Гиалуронатлиазы были классифицированы в 1971 году в лаборатории Meyer . Концепция данной классификации предельно проста: фермент - катализируемая реакция - продукт реакции. В соответствии с данной классификацией выделяют три различных вида гиалуронидаз (гиалуронатлиаз):

Гиалуроноглюкозаминидазы (гиалуронидазы млекопитающих) - эндо-β-N-ацетилгексоаминидазы, расщепляют гиалуроновую кислоту до тетра- и гексасахаридов.

Гиалуроноглюкозаминидазы не облалают субстратной специфичностью, а также способны формировать поперечные сшивки между молекулами гиалуроната и хондроитинсульфата. Одной из дополнительной функции гиалуронидаз в организме млекопитающих является расщепление гиалуроната до дисахаров для получения энергии .

Гиалуронатлиазы (гиалуронидазы бактерий) - это эндо-β-ацетил-гексоаминоэлиминазы, гидролизирующие гиалуронат до 4,5-ненасыщенных дисахаров. Обладают высокой специфичностью к субстрату. У бактерий гиалуронидазы являются фактором патогенности, необходимой для инвазии и адгезии бактерий (для проникновения в организм млекопитающего).

5. Получение гиалуроновой кислоты

Все известные способы получения гиалуроновой кислоты можно разделить на две группы: физико-химический метод, который заключается в экстрагировании гиалуроната из тканей животного сырья млекопитающих, других позвоночных животных и птиц; и микробный метод получения ГК на основе бактерий-продуцентов.

5.1. Физико-химический способ: экстракция из животного сырья

Как было сказано ранее, гиалуроновая кислота встречается во многих тканях млекопитающих и птиц, и, в зависимости от гистологической принадлежности, содержание гиалуроновой кислоты и ее молекулярная масса могут варьировать. Кроме того, в различных тканях гиалуронат может находиться в комплексах с белками и родственными полисахаридами, что затрудняет его очистку с последующим выделением. В настоящее время для промышленного получения используют пупочные канатики новорожденных и гребни кур. Однако, кроме вышеперечисленных методов, описаны разнообразные способы выделения гиалуроната на основе стекловидного тела глаз крупного рогатого скота, синовиальной жидкости, суставных сумок, свиной кожи, плазмы крови и хрящевой ткани . При выделении биополимера прибегают к различным приёмам выделения: гомогенизация, экстракция, фракционное осаждение и т.п.

Любая процедура выделения гиалуронана включает предварительное разрушение органов и тканей, содержащих биополимер, и белково-углеводных комплексов. Разрушение достигается посредством методов измельчения и гомогенизации . После полученный гомогенат подвергают экстракции с использованием водно-органических растворителей. Ковалентно-связанные примеси пептидов удаляют методом ферментативного протеолиза, посредством обработки протеазами (папаином) или химической денатурацией (хлороформ, амиловый спирт с этанолом). Следующий этап — это адсорбция на активированном угле, посредством электродиализа. От примесей мукополисахаридов биополимер очищают методом осаждения хлоридом цетирпиридиния или посредством ионообменной хроматографии.

Наибольшее распространение, в силу доступности сырья и высокого содержания биополимера, получил метод выделения гиалуроновой кислоты из петушиных гребней. Экстракция производится смесью ацетона с хлороформом (удаление белка), водой, либо водно-спиртовой смесью (пропионовый, трет-бутиловый спирты) с последующей сорбцией на активированном угле, посредством электрофореза или на ионообменной смоле .

5.2. Микробный синтез, продуценты гиалуроновой кислоты

Экономически более выгодным является метод микробного синтеза гиалуроновой кислоты на основе бактериальных штаммов-продуцентов. Такой синтез при введении его в масштабы производства, будет иметь меньше издержек, таких как затраты на животное сырье и зависимость от сезонных поставок. И, напротив, производство гиалуронана на основе микробного синтеза позволит масштабировать производство и получить продукт высокой степени очистки, не содержащий примесей, а, следовательно, имеющий низкую аллергенность . С момента открытия способности бактерий к синтезу гиалуроновой кислоты, постоянно ведутся исследования возможности получения искомого полимера биотехнологическим путем, т. е. путем культивирования бактерий-продуцентов на питательных средах определенного состава в строго заданных условиях с последующим выделением целевого продукта. К продуцентам гиалуронана можно отнести капсулообразующие бактерии родов Streptococcus и Pasteurella . К штаммам-продуцентам предъявляется ряд требований:

Отсутствие патогенности и, особенно, гемолитической активности;

Способность к синтезу высокомолекулярной гиалуроновой кислоты;

Большие размеры капсул с высоким содержанием биополимера (капсулы при этом должны легко отделяться, желательно при экстракции);

Отсутствие гиалуронидазной активности, чтобы исключить потери целевого продукта;

Высокая способность к росту, при этом наиболее полное использование субстрата;

Сохранение стабильности физиолого-биохимических свойств.

Исследования в области поиска штамма, способного удовлетворить потребности в биополимере и соответствующего всем параметрам, привели к Streptococcus equi surbsp. equi. и Streptococcus equi surbsp. zooepidеmiсus .

Дикие типы стрептококков синтезируют внеклеточные белки, что снижает выход биополимера. Поэтому для получения воспроизводительных гиалуронидазанегативных, не гемолитических штаммов, проводили их модификацию посредством химического и УФ-индуцированного мутагенеза или ненаправленного мутагенеза с последующей селекцией. Генно-инженерные штаммы кишечных палочек, полученные на основе методов экспрессии оперонов, кодирующих синтез гиалуронатсинтетазы стрептококков на матрицу бактерий, в настоящее время не применяются, ввиду низких показателей выхода биополимера. Исключением можно считать генно-инженерный штамм Bacillus subtilis, показывающий высокие результаты выхода биополимера, при росте на сложных ферментированных средах .

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов Streptococcus zooepidemicus. Типичный состав синтетической питательной среды для бактерий рода Streptococcus, синтезирующих гиалуроновая кислоту, приведен ниже.

Источник углевода и энергии: глюкоза - 1000; аминокислоты: DL-аланин, L-аргинин, L-аспарагиновая кислота, L- цистин, L-цистеин, L-глютаминовая кислота, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, гидрокси-L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин, L-валин по 100; витамины: биотин - 0,2, фолиевая кислота - 0,8, никотинамид - 1, никотинамидадениндинуклеотид - 2,5, пантотенат кальция - 2, пиридоксаль — 1, пиридоксамин гидрохлорид - 1, рибофлавин — 2, тиамин гидрохлорид - 1; нуклеотиды: аденин - 20, гуанин гидрохлорид - 20, урацил - 20; соли органических и неорганических кислот: FeS04*7H20 - 5, Fe(N03)2*9H20 - 1, К2НР04 - 200, КН2Р04 - 1000, MgS04*7H20 - 700, MnS04 - 5, СаС12*6Н20 - 10, NaC2H302*3H2O - 4500, NaHC03 - 2500, NaH2P04*H20 - 3195, Na2HP04 - 7350.

Культивирование бактерий pода Streptococcus с целью получения ГК осуществляется, как правило, в периодических условиях. Питательную среду готовят однократно, растворяя необходимые компоненты среды в воде, после чего среду стерилизуют. Источник углерода стерилизуется отдельно. После засева за ходом ферментации следят по потреблению субстрата, росту концентрации клеток, образованию продукта (ГК), продуктов метаболизма, изменению рН среды. Максимальная концентрация ГК составляет приблизительно 5 г/л. Дальнейший рост содержания в среде ГК ведет к многократному возрастанию вязкости КЖ, резкому ухудшению массообменных характеристик процесса ферментации, трудностям при аэрировании и перемешивании. Концентрация ГК при периодической или периодической с подпитками по субстрату ферментации достигает заданного значения за 6 - 26 часа. Как правило, после выхода культуры в стационарную фазу процесс завершают. Клетки микроорганизмов инактивируют прогреванием при 60 - 80 °С. Биомассу отделяют одним из хорошо известных способов - флокуляцией, сепарированием, центрифугированием, фильтрованием. ГК из КЖ осаждают органическими растворителями или катионными ПАВ. Очистку проводят с помощью ультрафильтрационных методов, переосаждения или хроматографией.

Данные методы принципиально не отличаются от методов выделения ГК из животного сырья, описанных ранее. Например, в патенте на метод получения ГК описан следующий способ культивирования штамма-продуцента и выделения ГК. Ферментацию осуществляли в биореакторе на 3 л (коэффициент заполнения ферментера 0,5) на среде состава: 2,0 % глюкозы, 0,5 % ДЭ, 1,5 % пептона, 0,3 % КН2Р04, 0,2 % К2НР04, 0,011 % Na2S203, 0,01 % MgS04 * 7Н20, 0,002 % Na2S03, 0,001 % СоС12, 0,001 % MnCl2 и 0,5 % соевого масла; рН среды 7,0. Стерилизация среды осуществлялась глухим паром 120 °С в течение 15 мин. После охлаждения до комнатной температуры вносился инокулят культуры S. zooepidemicus штамм Ferm ВР-878 в количестве 0,1 л. Аэробное культивирование (расход воздуха 0,7 л/(л*мин) длилось 26 часов при постоянном термостатировании (35 °С) и перемешивании среды (300 об/мин). рН среды поддерживался постоянным на уровне 7,0. На 24-ом часу культивирования в асептических условиях вносилась подпитка по субстрату - 100 мл 50 % раствора глюкозы. Процесс завершали по прошествии 26 часов культивирования.

Для выделения ГК проводили следующие процедуры. К бактериальной культуре добавляли 3,2 л дистиллированной воды. После тщательного и длительного перемешивания биомассу отделяли центрифугированием. Супернатант концентрировали до 1,6 л на ультрафильтрационном половолоконном аппарате и проводили диализ против дистиллированной воды. В образовавшийся раствор вносили ацетат натрия до конечной концентрации 0,5 % и проводили осаждение 5 л этилового спирта. Осадок полисахаридов отделяли центрифугированием. Очистку ГК проводили, растворяя полученный осадок в дистиллированной воде (0,5 л) и добавляя 4 % водный раствор бромида цетилпиридиния. Осадок связанной с катионным ПАВ ГК отделяли и растворяли в 40 мл 0,3 М раствора хлорида натрия. Нерастворенную часть осадка отбраковывали. К раствору добавляли 120 мл этанола для осаждения ГК. Осадок отделяли и растворяли в дистиллированной воде, после чего проводили очистку на ионообменной смоле и повторное спиртоосаждение. Выход очищенного гиалуроната натрия с одной ферментации составлял 7,8 г. Содержание белка в препарате составляло менее 0,05 %. Молекулярная масса ГК равнялась 1,005 МДа .

Другие способы биотехнологического получения ГК, описанные в патентах, незначительно отличаются составом сред.

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов бактерий Bacillus subtilis. К способам получения гиалуроновой кислоты, относится метод биосинтеза ГК на основе генно-модифицированного штамма Bacillus subtilis, содержащий генетическую конструкцию, включающую промотор, функционально активный в указанной клетке, и кодирующую область, состоящую из нуклеотидной последовательности, кодирующей стрептококковую гиалуронансинтазу (hasA); последовательности, кодирующей UDP-глюкозо-6-дегидрогеназу Bacillus (tuaD) или аналогичный фермент стрептококкового происхождения (hasB), и последовательность, кодирующую бактериальную или стрептококковую UDP-глюкозопирофосфорилазу.

Метод включает культивирование клетки-хозяина Bacillus в условиях, подходящих для продуцирования гиалуроновой кислоты, при этом клетка-хозяин Bacillus содержит конструкцию нуклеиновой кислоты, включающую последовательность, кодирующую гиалуронансинтазу, функционально связанную с промоторной последовательностью, чужеродной в отношении последовательности, кодирующей гиалуронансинтазу; и извлечения гиалуроновой кислоты из среды культивирования .

6. Применение гиалуроновой кислоты

Гиалуроновая кислота - вещество с огромным спектром действия, и поистине удивительными свойствами. Спустя несколько лет после открытия гиалуроновой кислоты начинается разработка препаратов на основе глюкозоаминоликана для наружного применения в качестве средства, повышающего регенеративные и барьерные функции кожи. Однако, как известно, субстанция, изготовленная из животного сырья, требует тщательной очистки от примесей, что накладывает дополнительные издержки производства и отражается на цене конечного продукта . Действительно высокая себестоимость гиалуроновой кислоты долгое время препятствовала расширению спектра применения биополимера, однако постепенное увеличение знаний о свойствах полимера и внедрение биотехнологических методов на основе микробного синтеза, позволило существенно снизить себестоимость субстанции, подталкивает развитие разнообразных приложений, в которых находит применение гиалуроновой кислоты в областях медицины, пищевой, фармацевтической, космецевтической промышленности. Ведутся исследования по созданию лекарственных препаратов и БАД на основе гиалуроната с противовоспалительным, иммуномодулирующим и пролонгирующим действием, которые, возможно, в будущем можно будет применять в качестве основы терапии заболеваний в онкологии, оториноларингологии, хирургии, эндокринологии и многих других сферах человеческой деятельности .

6.1. Гиалуроновая кислота в медицине

Гиалуроновая кислота обладает антимикробным и регенерирующим действиями, поэтому на основе ее разработаны препараты для эффективной терапии поражений кожи. Созданные изначально как препараты против ожогов, данная группа активно применяется при терапии трофических нарушений кожного эпителия посттромботического генеза. Доказано, что низкомолекулярная гиалуроновая кислота (менее 10 кДа) оказывает ангиогенное действие, тем самым снижая образование спаек и разрастание соединительной ткани, так же улучшает микроциркуляцию и снижает эффекты воспаления .

Гиалуронат имеет свойства повышать активность интерферона, тем самым проявляя выраженное противовирусное действие. Была доказана высокая активность препаратов на основе гиалуроновой кислоты в отношении вируса герпеса и некоторых других. По данным некоторых источников высокомолекулярная гиалуроновая кислота является пролонгатором действия других БАВ, растворенных в ней Лекарственные вещества, за счет высокой вязкости гиалуроната, выделяются в ткани в течение длительного времени. Создается так называемое депо, из которого БАВ постепенно диффундирует в среду организма. Это позволяет увеличить терапевтическую широту, потенцировать в некоторых случаях фармакологический эффект, снизить побочные эффекты, а также расширить возможности применения других лекарственных веществ (стероидных препаратов, антибиотиков, пептидов, НПВС и т.д.) в комбинации с гиалуроновой кислотой. Широко применение гиалуроната в хирургии:

1. Офтальмологическая хирургия - гиалуронат натрия используется в качестве репаративного средства при оперативных вмешательствах на эндотелиальном слое роговицы (удаление катаракты).

2. Хирургическая травматология - при хирургических операциях с обширным сечением хрящевой ткани и осложненных артритах используется в качестве регенерирующего, смазывающего, противовоспалительного и анальгезирующего средства .

6.2. Гиалуроновая кислота в косметологии

Применение гиалуроната и его солей в косметологии основывается на способности гиалуронатсодержащих препаратов оказывать местное противовоспалительное, ранозаживляющее и иммуномодулирующее действие. Способность задерживать в межклеточном пространстве воду является основой механизма коррекции возрастных деформаций кожи. На данный момент в косметологической практике стали весьма популярны инъекции 1-3% водного раствора гиалуроновой кислоты для внутри- или подкожного введения. Введение гиалуроновой кислоты в эпителий в виде водного геля повышает эластичность и упругость тканей, тем самым придавая коже прежние качества и красоту . Однако широчайшее применение высокомолекулярный гиалуронат получил при изготовлении различных комбинированных кремов и гелей для наружного применения. Данный вид продукции имеет ту же направленность, что и инъекции - восстановить реологические свойства кожи, тем самым предотвратить образование морщин, прыщей и т.д. .

Гиалуроновая кислота обладает свойствами, которые делают ее крайне подходящей для использования в качестве дермального филлера: она способна связывать большое количество воды, присутствует в коже в естественных условиях и не склонна вызывать нежелательные реакции. Филлеры (Fill — от англ. — наполнять) - это инъекционные кожные наполнители, которые используются в косметологии для уменьшения глубины морщин, носогубных складок и складок в уголках рта . Филлеры также используются для придания дополнительного объема лицу в области скул, щек и губ В настоящее время широкое распространение получила группа ГК- филлеров семейства Surgiderm и Juvederm Ultra А. Surgiderm и Juvederm Ultra представляют собой однородные монофазные гели гиалуроновой кислоты неживотного происхождения. Они являются одними из наиболее пластичных материалов для инъекционной контурной пластики, что определяет не только легкость их введения, но и равномерное распределение в тканях, позволяет полностью исключить контурирование материла .

Современная серия препаратов на основе гиалуроновой кислоты PRINCESS®. «PRINCESS® Filler» представляет собой стерильный, биодеградируемый, вязкоэластичный, прозрачный, бесцветный, изотонический и гомогенизированный гелевый имплантат для интрадермальных инъекций. Содержащаяся в «PRINCESS® Filler» гиалуроновая кислота с поперечно-сшитой структурой продуцируется бактериями Streptococcus equi, представлена в виде раствора с концентрацией 23 мг/мл в физиологическом буфере .

Заключение

Гиалуроновая кислота - продукт животного происхождения, имеющий поистине удивительные свойства и высочайший спектр применения как сейчас, так и в перспективе дальнейшего ее использования. Поэтому совсем не удивительно, что ее свойства изучаются во всем мире.

В настоящее время исследуются процессы и механизмы действия гиалуроновой кислоты на ткани организма. Выдвигаются гипотезы относительно роли гиалуроната и родственных глюкозоаминогликанов в процессах пролиферации, дифференциации, миграции животных клеток в процессах иммунного ответа и эмбриогенеза, а также делаются попытки по установлению связи между молекулярной массой, степенью очистки и эффективностью препаратов.

Физико-химический способ, в виду своей экономической нерентабельности, постепенно уступает место биотехнологическому методу синтеза биополимера. Были проведены поиски продуцентов, соответствующих всем параметрам, а также различного рода испытания на предмет изучения метаболизма гиалуроновых кислот. Результатом исследования служило выявление прямая связи между способностью синтеза гиалуроновых кислот и наличием специфических ферментов гиалуронатсинтетаз.

В последние 20 лет оперон, кодирующий синтез гиалуронатсинтетаз, был выделен в чистом виде и неоднократно экспрессировался различным видам микроорганизмов с целью получения генно-модифицированных штаммов-продуцентов гиалуроновых кислот. Однако результата не могли добиться очень долгое время. Генно-модифицированные штаммы производили неактивную форму фермента, следовательно, способностью к продукции гиалуроновых кислот не обладали. Но недавно проведенные исследования по созданию генно-модифицированного штамма на основе бактерий Bacillus sibtilis показали хорошие результаты. Штаммы бактерий активно синтезировали гиалуронат высокой молекулярной массы, лишенной пептидных включений и связей с родственными мукополисахаридами.

Однако поиск штаммов-продуцентов сейчас продолжается. Проверяются возможности синтеза гиалуроната бактериями рода Streptomyces, и ведется разработка биотехнологии на их основе; кроме того, изучаются пути использования и внедрения гиалуроната во все сферы жизнедеятельности общества.

Библиографическая ссылка

Савоськин О. В., Семенова Е. Ф., Рашевская Е. Ю., Полякова А. А., Грибкова Е. А., Агабалаева К. О., Моисеева И. Я. ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ МЕТОДОВ ПОЛУЧЕНИЯ ГИАЛУРОНОВОЙ КИСЛОТЫ // Научное обозрение. Биологические науки. – 2017. – № 2. – С. 125-135;
URL: https://science-biology.ru/ru/article/view?id=1060 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Гиалуронат, или гиалуроновая кислота, свойства и пользу которой рекламируют косметические компании, является основным средством, применяемым для омоложения кожи лица. Широкое распространение средств с ее содержанием заставляет многих задумываться о том, полезны ли процедуры и домашний уход с помощью таких препаратов, или они вредны для лица. Чтобы решить этот вопрос, нужно понять, что такое гиалуроновая кислота и как правильно выбрать косметику, чтобы получить прекрасный результат.

Гиалуроновая кислота в организме человека

Полисахарид — это химический термин, который подразумевает, что в состав вещества входят молекулы глюкозы. В гиалуронате они соединены в длинные цепочки. Молекула гиалуроновой кислоты может содержать до 25 000 одинаковых звеньев. При взаимодействии с особым белком (аггреканом) она приобретает способность связывать и удерживать в тканях молекулы воды.

Гиалуроновая кислота в организме человека входит в состав соединительной ткани: хрящей, сухожилий и т.п. Много гиалуроната содержится в стекловидном теле глаза, в синовиальной жидкости, где она обеспечивает вязкость среды. Вместе с волокнами коллагена и эластина вещество входит в структуру кожи, обеспечивая ее упругость и участвуя в процессах регенерации. Откуда берется гиалуроновая кислота, если ее еще не начали вводить во время косметических процедур?

Гиалуронат вырабатывается самим организмом. В теле взрослого человека общая масса этого вещества достигает 15 г. Но естественный синтез его замедляется после 25-летнего возраста, и процессы распада гиалуроната преобладают над его производством в организме. С течением времени доля кислоты в кожных покровах снижается, а ткани обезвоживаются. В дерме происходят изменения, которые внешне выглядят как морщины. Из-за снижения количества гиалуроната в других тканях возрастные изменения затрагивают весь организм.

Растения не вырабатывают гиалуроновую кислоту. Поэтому никакая диета с приемом пищи, содержащей соевые бобы, клетчатку или другие вещества, не влияет на выработку собственной кислоты в организме. Для омоложения кожи нужна та или иная косметическая процедура с применением препаратов гиалуроната.

Гиалуроновая кислота в косметологии

Применение гиалуроновой кислоты в косметологии основано на ее способности удерживать воду. Исследования ученых доказали, что сочетание гиалуроната и янтарной кислоты активизирует обмен веществ в тканях кожи, способствуя восстановлению ее клеток. Восстанавливающее действие гиалуроновой кислоты на кожу лица приводит не только к визуальному улучшению состояния кожи, но и обновляет ее на клеточном уровне. Чтобы убедиться в этом, нужно разобраться, как действует гиалуроновая кислота на кожу лица и зачем нужна та или иная процедура.

В качестве составляющей межклеточного вещества гиалуронат способствует движению лимфоцитов и фибробластов к местам повреждения кожи. При воспалительных явлениях, в случае мелкой травмы эти клетки обеспечивают борьбу с микроорганизмами и заживление тканей. Процессы регенерации состоят и в образовании большого количества волокон эластина и коллагена, которые и сохраняют упругость кожи.

В косметических кабинетах посетителям предлагают услуги, которые основаны на инъекционном введении препаратов гиалуроновой кислоты в кожные покровы. Результат всех процедур сводится к увеличению объема истонченной кожи, заполнению морщин, устранению кожных дефектов (рубцов от прыщей). Различают следующие виды использования гиалуроновой кислоты:

  • биоревитализация — для лечения угрей, послеродовых растяжек, восстановления кожи лица при возрастных изменениях;
  • мезотерапия — исправление дефектов кожи лица;
  • при редермализации в состав препаратов в качестве действующего вещества входят и гиалуроновая, и янтарная кислоты;
  • для биорепарации применяют филлеры с пептидами и витаминами;
  • заключается в восстановлении овала лица при помощи гиалуроновой кислоты;
  • контурная пластика применяется для изменения формы и объема отдельных частей лица (например, для ).

Кроме салонных методик существуют средства косметики, в состав которых входит низкомолекулярная гиалуроновая кислота. Они предназначены для ухода за кожей в домашних условиях. Чтобы получился желаемый эффект, а кожа была упругой и бархатистой, при использовании сыворотки или крема нужно соблюдать инструкцию к препарату.

Видео о плюсах и минусах использования гиалуроновой кислоты для лица

Когда нельзя применять средства с гиалуроновой кислотой?

От использования гиалуроновой кислоты и средств с ее содержанием иногда приходится отказываться. Это связано с особенностями получения вещества. Несмотря на современные способы очистки гиалуроновой кислоты, она способна вызвать аллергические реакции. Способность межклеточной среды к проведению полезных веществ и лимфоцитов внутри кожи может сыграть отрицательную роль и послужить способом перемещения инфекционных агентов или даже измененных клеток (когда в организме есть опухоли). Побочные эффекты могут возникнуть и от индивидуальной реакции организма, поэтому получать консультацию и проводить омолаживающее лечение лучше в крупных салонах, где работают сертифицированные специалисты.

При следующих состояниях:

  • острых инфекционных и воспалительных процессах;
  • сниженной свертываемости крови или при приеме антикоагулянтов;
  • аутоиммунных заболеваниях;
  • индивидуальной непереносимости препаратов с гиалуронатом;
  • аллергии;
  • беременности и кормлении грудью.

Нежелательно начинать процедуры, если менее 30 дней назад проводился пилинг лица (лазерный или химический).

Какая она бывает?

Производители выпускают множество препаратов с обозначениями, которые не всегда понятны потребителям их продукции.

Чтобы правильно выбрать средство для домашнего пользования или салонного ухода, надо иметь в виду, что виды гиалуроновой кислоты могут различаться по длине молекулы:

  1. Для лечения артрита, глазных болезней медики применяют среднемолекулярное вещество. Такая гиалуронка — скорее лекарство, чем косметика. Ее введение в организм стимулирует фибробласты и помогает организму начать продуцировать собственный гиалуронат.
  2. Низкомолекулярная гиалуроновая кислота состоит из коротких отрезков и входит в состав средств для домашнего применения: тоников или сывороток, эмульсий, кремов и т.д. Небольшие размеры частиц помогают им проникать в глубину дермы. С помощью лекарств на основе этой формы гиалуроната производят и лечение сложных заболеваний кожи (трофических язв, псориаза и т.п.). Недостатком является малый срок депонирования кислотного вещества: оно сохраняется в тканях всего 7-8 суток.
  3. В салонных процедурах чаще используется высокомолекулярная гиалуроновая кислота, состоящая из длинных полимерных цепочек. Она способствует гидратации кожи и удержанию влаги в ней. Введенная внутрь дермы, гиалуроновая кислота для лица более полезна, чем предыдущая, т.к. растворы на ее основе имеют большую вязкость и могут сохраняться в коже до 2 недель. После этого начинаются процессы ее деградации, и процедуры приходится повторять через 6-10 месяцев.

Различают разновидности гиалуроната и по способу производства. При выборе средства стоит поинтересоваться, из чего изготовлена гиалуронка. В настоящее время все реже применяется вещество, полученное из животных материалов (пупочных канатиков, петушиных гребешков, рыбы и т.п.). Его не удавалось качественно очистить от примесей белка, поэтому инъекции могли вызвать аллергическую реакцию или отторжение.

В настоящее время производители косметики выпускают биосинтезированный гиалуронат. Его получают благодаря деятельности микроорганизмов. с этим видом гиалуронки считаются гипоалергенными.

Система гиалуроновых кислот, применяемых в косметологии, включает в себя и такие виды, как:

  • стабилизированная, или нативная — биосинтезированные молекулы, прошедшие процесс сшивки, которые меньше подвергаются деградации в тканях человека;
  • нестабилизированная, т.е. лишенная этих качеств.

Из-за особенностей каждого типа косметология применяет их по-разному. Нестабилизированная гиалуроновая кислота для лица чаще находит применение для общего улучшения состояния кожи (в или при биоревитализации), для увлажняющих процедур. Стабилизированную форму применяют, чтобы моделировать контуры лица, восполнять объемы тканей на отдельных участках (для заполнения морщин и выравнивания складок). Сфера использования того или иного препарата зависит от степени стабилизации молекул: менее стабилизированные препараты рекомендуются для коррекции мелких морщин, более вязкие, с высокой стабилизацией — для выравнивания складок и провалов.

Потребительские свойства гиалуроновой кислоты разных видов различаются незначительно. Основное отличие — это срок ее сохранения под кожей до начала деградации и наличие или отсутствие вероятности возникновения побочных эффектов.

Препараты и средства с гиалуроновой кислотой

Производство гиалуроновой кислоты для лица и препаратов на ее основе осуществляется в разных странах. Несомненным лидером по выпуску косметики с омолаживающим эффектом является Корея. Именно корейская косметика подарила гиалуроновой кислоте нынешнюю популярность.

Гиалуроновая кислота от морщин применяется в виде наружных и внутренних средств. Среди препаратов можно выделить следующие разновидности:

  1. Крем или сыворотку могут применять девушки до 25-летнего возраста. Гиалуроновая кислота для лица в виде наружного средства, дополненного маслами растительного происхождения, может защищать кожу от пересыхания, но практически неспособна исправить дефекты дермы. Наружные средства могут помочь и от прыщей.
  2. Тем, кому за 30, омоложение гиалуроновой кислотой следует проводить при помощи инъекционных методов. При проведении процедуры косметолог введет филлер туда, где требуется заполнение морщин: гиалуроновой кислотой можно выровнять даже резкие носогубные, межбровные или лобные складки. Собирая и удерживая влагу, препарат разбухнет и разгладит кожу.
  3. Можно приобрести препарат и для приема внутрь. Пить гиалуроновую кислоту нужно в соответствии с инструкцией к средству: чаще всего по 1 таблетке или капсуле в день. Это лучшая методика для тех, кто боится уколов или не доверяет и другим орепроцедурам. Эффект от приема лекарств придется ждать 2-3 месяца, постоянно принимая средство.

Современная косметология применяет гиалуронат не только для кожи лица. Существует корейская косметика и (маски, сыворотки и пр.). Они действуют на волосы по той же схеме, по которой происходит увлажнение кожи лица гиалуроновой кислотой, т.е. создают защитную пленку, удерживая влагу внутри волоса. Широко применяются и специальные средства для мужчин (для увеличения полового органа).

Мифы о гиалуроновой кислоте

Из-за относительной новизны восстанавливающей косметики с гиалуронатом вокруг способов омоложения ходит большое количество разных мифов и домыслов. Часть их имеет под собой основания, но большинство являются неправдой. Один из таких — миф о том, что гиалуроновая кислота в косметологии является аналогом ботокса.

На самом деле, ботокс — это препарат, содержащий токсин бактерии ботулизма. Вещество расслабляет и парализует мышечные ткани, разглаживая морщины. Принцип действия гиалуроновой кислоты иной: вязкая жидкость просто заполняет пространство под кожей, выталкивая часть ее наружу. Качественные филлеры нетоксичны и абсолютно безопасны, т.к. гиалуронка распадается под воздействием ферментов человека до простых сахаров.

Женщины считают, что лучше не применять в зимние холода увлажняющие маски и кремы с содержанием гиалуроновой кислоты (для лица). Но именно зимой кожа подвергается воздействию сухого воздуха и на улице, и в помещении. Увлажняющие препараты необходимы, чтобы уберечь ее от шелушения и обезвоживания. Используя увлажняющее средство, нужно знать, что гиалуроновая кислота на кожу лица наносится за 30-40 минут до выхода на улицу. Средство успеет впитаться в дерму и предохранит ее от пересыхания.

Другой миф повествует о том, что из-за применения гиалуроната может повыситься внутриглазное давление. Это убеждение совершенно не обосновано, т.к. препараты не влияют на процессы в организме. Гиалуроновая кислота, функции которой состоят в накоплении и сохранении влаги, уже содержится внутри глаза и попасть туда из крема или филлера не может.

Многих интересует и вопрос о том, может ли быть аллергия на гиалуроновую кислоту. При выборе качественных препаратов, произведенных на основе биосинтезированной гиалуроновой кислоты, риск аллергических реакций сведен к минимуму. При этом не играет роли, какой тип вещества использовал производитель в своих средствах ухода: и низкомолекулярная, и высокомолекулярная гиалуронка имеют одинаковые побочные эффекты и противопоказания. Состав гиалуроновой кислоты не меняется, можно изменить только длину ее молекул. При применении кремов и сывороток аллергия чаще возникает из-за содержания сопутствующих веществ растительного и животного происхождения (масел, отдушек или экстрактов).

У потребителей вызывает сомнения и способность молекул проникать в дерму при нанесении препарата на кожу. Гиалуроновая кислота, которая применяется для изготовления таких средств ухода, обладает небольшими размерами молекул и беспрепятственно проникает в межклеточное пространство. Различие с инъекциями состоит в глубине проникновения: наружные средства способны увлажнить только верхние слои дермы. Поэтому их применение ограничено возрастом женщины.

Среди изобилия средств и методик их применения легко выбрать наилучший способ, подходящий каждой женщине. При выборе какого-то из них следует учесть и свой возраст, и противопоказания, которые могут способствовать аллергической реакции или вызвать другие неприятности. Перед проведением процедуры лучше всего посоветоваться с опытным специалистом-косметологом.

Гиалуроновая кислота [ГК] найдена во внеклеточном матриксе позвоночных тканей, в поверхностном покрытии определенных видов Streptococcus и болезнетворных бактериальных микроорганизмов Pasteurella, а также на поверхности некоторых частично пораженных вирусом морских водорослей. Синтазы гиалуроновой кислоты [ГКС], это ферменты, которые полимеризуют ГК, используя UDP-сахарные предшественники, которые найдены во внешних мембранах этих организмов. Были идентифицированы гены ГКС из всех вышеупомянутых источников. Кажется, существуют два отличных класса ГКС, что основано на различиях в аминокислотной последовательности, предсказанной топологии в мембране и предполагаемом механизме реакции.

Все ГКС были определены как синтазы класса I, за исключением ГКС у вида Pasteurella. Был также объяснен каталитический способ работы единственной ГКС класса II (пмГКС). Этот фермент удлиняет внешние ГК-присоединяемые олигосахаридные акцепторы путем добавления индивидуальных моносахаридных единиц к неуменьшающемуся концу, чтобы сформировать длинные полимеры in vitro; ни одна ГКС класса I не имеет такой способности. Способ и направление полимеризации ГК, катализируемой ГКС класса I, остаются неясными. Фермент пмГКС также был проанализирован на предмет двух имеющихся у него активностей: GlcUA-трансферазной и GlcNAc-трансферазной. Таким образом, два активных участка существуют в одном пмГКС полипептиде, опровергая широко принятую догму гликобиологи: "один фермент - один модифицированный сахар". Предварительные свидетельства позволяют предполагать, что у ферментов класса I может также быть два участка активности.

Каталитический потенциал фермента пмГКС может использоваться, чтобы создать новые полисахариды или проектировать олигосахариды. Из-за множества потенциальных ГК-базирующихся медицинских методов лечения, эта хемоэнзиматическая технология обещает принести пользу на пути нашего стремления к хорошему здоровью.

Ключевые слова

Гиалуроновая кислота (ГК), хондроитин, гликозилтрансфераза, синтаза, катализ, механизм, химерные полисахариды, монодисперсные олигосахариды

Введение

Гиалуронан [ГК] - очень богатый глюкозаминогликан в организме позвоночных, имеющий и структурную, и сигнальную роли. Определенные патогенные бактерии, а именно, группы А и С вида Streptococcus и тип А Pasteurella multocida, производят внеклеточный покрывающий ГК, называемый капсулой. У обоих видов ГК капсула и является фактором ядовитости, который обеспечивает бактериям сопротивляемость фагоцитам и комплементарность. Другой организм, производящий ГК - это морская водоросля хлорелла, инфицированная определенным большим двухцепочечным ДНКовым вирусом PBCV-1. Роль ГК в жизненном цикле этого вируса пока не ясна на данный момент.

Иллюстрация 1. Реакция биосинтеза ГК.

Ферменты класса гликозилтрансфераз, которые полимеризируют ГК, называются ГК-синтазами (или ГКС), по старой терминологии, включающей также ГК-синтетазы. Все известные ГК-синтазы - это разновидности одного полипептида, ответственные за полимеризацию цепи ГК. UDP-сахарные предшественники, UDP-GlcNAc и UDP-GlcUA используются ГК-синтазами в присутствии двухвалентного катиона (Mn и/или Mg) при нейтральном pH (рис. 1). Все синтазы являются мембранносвязанными белками в живой клетке и обнаружены в мембранной фракции после лизиса клеток.

Между 1993 - 1998 были идентифицированы и клонированы на молекулярном уровне ГК-синтазы групп A и С Streptococcus [спГКС и сеГКС соответственно], ГК-синтазы позвоночных животных [ГКС 1,2,3], ГК-синтаза водорослевого вируса [свГКС], а также ГК-синтаза типа A вида Pasteurella multocida [пмГКС]. Первые три типа ГК-синтаз, кажется, очень похожи в размере, аминокислотной последовательности и предсказанной топологии в мембране. ГК-синтаза вида Pasteurella, напротив, больше и обладает существенно отличающейся от других синтаз последовательностью и предсказанной топологией. Поэтому, мы предположили существование двух классов ГК-синтаз (таблица 1). Ферменты класса I включают стрептококковые, позвоночные и вирусные белки, в то время как белок вида Pasteurella в настоящее время единственный член класса II. У нас также есть некоторые свидетельства того, что каталитические процессы ферментов класса I и класса II отличаются.

Таблица 1. Два класса ГК-синтаз:

Хотя ГК-синтаза вида Pasteurella был последним обнаруженным ферментом из всех, некоторые особенности пмГКС способствовали существенному продвижению в его изучении в сравнении с некоторыми членами ферментов класса I, которые исследовались четыре десятилетия. Ключевая особенностью пмГКС, которая позволила разъяснить молекулярное направление полимеризации и идентификацию ее двух активных участков - это способность пмГКС удлиннять внешне расположенный акцепторный олигосахарид. Рекомбинантная пмГКС добавляет одиночные моносахариды повторным способом к ГК-ассоциированному олигосахариду in vitro. Внутренняя особенность каждой передачи моносахарида ответственна для того, чтобы формировать альтернативное повторение дисахаридов в этом глюкозаминогликане; одновременное формирование дисахаридной единицы не требуется. С другой стороны, никакое подобное удлиннение внешних акцепторов не было доказано ни для какого фермента класса I. Через фундаментальное научное исследование мы теперь развили некоторые биотехнологические применения замечательного белка класса ГК-синтаз вида Pasteurella.

Материалы & методы

Реагенты

Все реактивы для молекулярнобиологических исследований без специальной пометки были от Promega. Стандартные олигонуклеотиды были от Great American Gene Company. Все другие реактивы высокой чистоты, если иначе не отмечено, были от Sigma или от Fisher.

Усечение пмГКС и точечные мутанты

Был произведен ряд усеченных полипептидов, путем амплификации pPm7А вставки методом полимеразной цепной реакцией с Taq-полимеразой (Fisher) и синтетическими олигонуклеотидными праймерами, соответствующими различным частям пмГКС, с открытой рамкой считывания. Ампликоны затем были клонированы в плазмиду для экспрессии pKK223-3 (tac промотор, Pharmacia). Получившимися рекомбинантными конструкциями были трансформированы клетки Escherichia coli штамма TOP 10F" (Invitrogen) и выращены на среде LB (Luria-Bertani) с ампициллиновой селекцией. Мутации были сделаны, используя метод QuickChange сайт-направленного мутагенеза (Stratagene) с плазмидой pKK/пмГКС как ДНК шаблон.

Приготовление фермента

Для приготовления мембраны, содержащей рекомбинантный пмГКС полной длины, пмГК1-972 был изолирован из E.coli, как описано. Для растворимых усеченных пмГКС белков, пмГКС1-703, пмГКС1-650 и пмГКС1-703 - содержащих мутантов, клетки были извлечены с помощью В-PerТМ II Bacterial Protein Extraction Reagent (Pieree) согласно инструкции производителя, за исключением того, что процедура была выполнена при 7°C в присутствии ингибиторов протеаз.

Ферментные пути полимеризации ГК. GlcNAc модификация или GlcUA модификация

Три варианта было разработано, чтобы обнаружить происходит ли (а) полимеризация длинных цепей ГК или (b) добавление одиночного GlcNAc к GlcUA-конечному акцепторному олигосахариду ГК , или (c) добавление одиночного GlcUA к GlcNAc-конечному акцепторному олигосахариду ГК . Полная активность ГКС была оценена для раствора, содержащего 50 mM Tris, pH 7.2, 20 mM MnCl2, 0.1 M (NH4)2SO4, 1 M этиленгликоля, 0.12 mM UDP-(14C)GlcUA (0.01 μCi; NEN), 0.3 mM UDP-GlcNAc и различный набор ГК олигосахаридов, полученный из тестикул путем обработки гиалуронидазой [(GlcNAc-GlcUA)n, n= 4-10] при 30°C в течение 25 минут в объеме реакционной смеси 50 мкл. GlcNAc-трансферазная активность была оценена в течение 4 минут в той же буферной системе с различным набором ГК олигосахаридов, но только с одним сахаром в роли предшественника - 0.3 mM UDP-(3H)GlcUA (0.2 μCi; NEN). GlcUA-трансферазная активность была оценена в течение 4 минут в той же самой буферной системе, но только с 0.12 mM UDP-(14C)GlcUA (0.02 μCi) и с нечетным набором ГК олигосахаридов (3.5 мкг уроновой кислоты), приготовленных при помощи воздействия ацетата ртути на ГК-лиазу Streptomyces. Реакции были прекращены путем добавления SDS до 2% (w/v). Продукты реакции были отделены от субстратов путем бумажной (Whatman 3M) хроматографии с этанолом/1 М сульфат аммония, pH 5 5, как основной растворитель (65:35 для ГКС и оценки GlcUA-Tase; 75:25 для оценки GlcNAc-Tase). Для оценки ГКС образец бумажной полосы был промыт водой, и объединение радиоактивных сахаров в полимер ГК было обнаружено по сцинтилляции жидкости, рассчитанной при помощи BioSafe II коктейля (RPI). Для реакций полуиспытания образец и расположенные вниз по течению 6 см полосы были посчитаны по частям в 2 см. Все оценочные эксперименты были просчитаны таким образом, чтобы быть линейными относительно времени инкубации и концентрации белка.

Гель-фильтрационная хроматография

Размер ГК полимеров был проанализирован хроматографически на колонках Phenomenex PolySep-GFC-P 3000, элюция производилась 0.2 M нитратом натрия. Колонка была стандартизована флуоресцентными декстранами различного размера. Радиоактивные компоненты были обнаружены с помощью датчика LB508 Radioflow (EG & G Berthold) и коктейля Zinsser. По сравнению с полной оценкой ГКС, используя бумажную хроматографию, описанную выше, эти 3-минутные реакции содержали дважды UDP-сахарные концентрации, 0.06 μCi UDP-(14C)GlcUA и 0.25 нанограмма ряда ГК олигосахаридов. Кроме того, использовалось добавление кипящего (2 минуты) этилендиамина тетрациловой кислоты (финальная концентрация 22 mM), чтобы закончить реакции вместо добавления SDS.

Результаты и обсуждение

Утилизация и специфичность акцептора ГКС

Некоторые олигосахариды были проверены, в качестве акцепторов для рекомбинантного пмГКС1-972(Таблица 2). ГК олигосахариды были получены из тестикул путем гиалуронидазного щепления, а удлиннены пмГКС с помощью доставляемых подходящих UDP-сахаров. Восстановление борогидратом натрия не нарушает активность акцептора. С другой стороны, олигосахариды, полученные из ГК при помощи отщепления лиазой, не поддерживают удлиннение; дегидратированные ненасыщенные невосстановленные концевые остатки GlcUA нуждаются в гидроксильных группах, которые смогли бы присоединить входящий сахар из UDP-предшественника. Поэтому пмГКС-катализируемое удлиннение происходит в случае невосстановленных концевых групп. В ряде параллельных экспериментов было обнаружены рекомбинантные формы синтаз класса I - спГКС и х1ГКС, которые не удлинняют ГК-получаемые акцепторы. Принимая во внимание направление активности ферментов класса I, противоречивые сообщения были сделаны и необходимы дальнейшие исследования.

Таблица 2. Специфика олигосахаридных акцепторо пмГКС:

Интересно, что хондроитин сульфат пентамер является хорошим акцептором для пмГКС. Другие структурно связанные олигосахариды такие, как хитотетроза или хепарозан пентамер, однако, не служат акцепторами для пмГКС. В целом, пмГКС, кажется, требует, β-связанных GlcUA-содержащих акцепторных олигосахаридов. Мы выдвигаем гипотезу, что участок связывания олигосахаридов промежуточен в цепи удерживания ГК во время полимеризации.

Молекулярный анализ активности пмГКС трансферазы: два активных участка в одном полипептиде

Возможность измерить два компонента гликозилтрансферазной активности ГК синтазы, GlcNAc-трансфераза и GlcUA-трансфераза, позволил молекулярный анализ пмГКС. Мы отметили, что короткий дублированный мотив последовательности: Asp-Gly-Ser (Аспарагиновая к-та-Глицин-Серин), присутствовал в пмГКС. Из анализа сравнения гидрофобных групп многих других гликозилтрансфераз, которые производят β-связанные полисахариды или олигосахариды предположили, что вообще, существует два типа доменов: области "A" и "Б". ПмГКС, синтаза класса II, тем и уникальна, что содержит два "А" домена (личная коммуникация, B.Henrissat). Было предложено, что определенные члены класса I ГК синтаз (спГКС) содержат одиночные "А" и одиночные "Б" области. Различное удаление или точечные мутанты пмГКС были оценены для их способности полимеризовать ГК цепи или их способность добавлять одиночный сахар к ГК акцепторному олигосахариду (Таблица 3). Суммируя сказанное, пмГКС содержит два отличных друг от друга активных участка. Мутагенез аспартата мотива DGS (остаток 196 или 477) по обоим сайтам приводи к потере ГК полимеризации, но активность другого сайта оставалась относительно незатронутой. Таким образом, двойная активность ГК синтазы была преобразована в два различных одиночных действия гликозилтрансферазы.

Таблица 3. Активность пмГКС с удаленным участком или точечной мутацией.

Удаление последних 269 остатков от конечной карбоксильной группы преобразовало слабо выраженный мембранный белок в хорошо выраженный растворимый. Рассмотрение аминокислотной последовательности белка пмГКС в этой области, однако, не показывает типичных особенностей вторичной структуры, которые обеспечили бы прямое взаимодействие фермента с двойным слоем липида. Мы выдвигаем гипотезу, что конечная карбоксильная группа каталитического фермента пмГКС стыкуется с направляющим мембраносвязанным полисахарида транспортного аппарата живущей бактериальной клетки.

Первая "A" область пмГКС, А1, является GlcNAc-тазой, в то время как вторая "A" область, A2, является GlcUA-тазой (рис. 2). Это - первая идентификация двух активных участков для фермента, который производит гетерополисахарид, так же как ясное доказательство, что один фермент может действительно передать два различных сахара. Отличный от типа F фермент вида P. multocida, названный пмЦС, был найден, и вяснено, что он катализирует формирование несульфатируемого полимера хондроитина. ГК и хондроитин идентичны в структуре, за исключением упомянутого выше полимера, который содержит N-ацетилглюкозамин вместо GlcNAc. И пмГКС, и пмЦС на 87 % идентичны на уровне аминокислот. Большинство изменений в остатках находятся в области А1, что вполне совместимо с гипотезой о том, что эта область ответственна за передачу гексозамина.

Иллюстрация 2. Схематическое изображение пмГКС областей.
Два независимых трансферазных домена, А1 и A2, ответственны за катализ полимеризации цепи ГК. Повторяющиеся последовательные добавления одиночных сахаров быстро строят цепь ГК. Похоже, что карбоксильный конец пмГКС некоторым способом взаимодействует с мембранносвязанным транспортным аппаратом бактериальной клетки.

Иллюстрация 3. Модель биосинтеза ГК при помощи пмГКС.
Одиночные сахара добавляются к каждому "A" домену повторным способом к невосстанавливающемуся концу цепи ГК. Внутренняя точность каждой стадии активности трансферазы поддерживает повторение структуры дисахаридов ГК. Возникающая цепь ГК вероятно сохраняется пмГКС во время катализа через олигосахарид-связывающий участок.

Мы продемонстрировали эффективную передачу одиночного сахара с помощью пмГКС in vitro несколькими типами экспериментов, поэтому, мы выдвинули гипотезу, что цепи ГК формируются быстрым, повторяющимся добавлением одиночного сахара синтазой класса II (рис. 3). К настоящему времени, одна линия свидетельства предполагает, что фермент класса I также обладает двумя участками трансферазы. Мутация лейцинового остатка 314 на валин в ммГКС1, в части предварительного участка GlcUA-тазы, как сообщали, преобразовала эту ГКС позвоночного животного в хито-олигосахаридную синтазу. Ни один участок с соответствующей активностью GlcNAc-трансферазы не был идентифицирован.

Прививание полимера полисахаридными синтазами: добавление ГК к молекулам или твердым частицам

Исследование пмГКС в научно-исследовательской лаборатории преобразовало представления о ГК синтазах от царства трудных, упорных животноподобных чудовищ до потенциальных биотехнологических рабочих лошадок. Новые молекулы могут быть сформированы, используя способность пмГКС привить длинные цепи ГК на коротких ГК полученных цепях или хондроитин-производных акцепторах. Например, полезные акцепторы могут состоять из маленьких молекул или лекарств с ковалентно связанной ГК или хондроитин-олигосахаридные цепи (длиной в 4 сахара, например). В другом случае, цепи ГК могут быть добавлены к олигосахаридному праймеру, иммобилизованному на твердой поверхности (таблица 4). Таким образом, длинные цепи ГК могут быть мягко добавлены к чувствительным веществам или тонким устройствам.

В другом приложении, новые химерные полисахариды могут быть сформированы потому, что использование пмГКС олигосахаридным акцептором не столь же строго, как сахаридная трансферазная специфика. Хондроитин и хондроитин-сульфат признаны как акцепторы пмГКС и удлинняются ГК цепью различных длин (рис. 4). Наоборот, пмЦС очень гомлогичная хондроитин синтазе, распознает и удлинняет ГК акцепторы цепями хондроитина. Химерные молекулы глюкозаминогликана сформированы, содержа естественные, определенного соединения связи. Эти привитые полисахариды могут служить, чтобы присоединиться к клетке или ткани, которая связывает ГК с другой клеткой или ткань, связывающей хондроитин или хондроитин-сульфат. В определенных аспектах, привитые глюкозаминогликаны напоминают протеогликаны, которые являются существенными компонентами матрикса в тканях позвоночных. Но так как никакие компоновщики белка не присутствуют в химерных полимерах, то антигенность и проблемы протеолизиса, возникающие вокруг медицинского использования протеогликанов, устранены. Риск передачи инфекционных агентов тканями, извлеченными из животных, человеческому пациенту также уменьшен при использовании химерных полимеров.

Таблица 4. ПмГКС-инициированное прививание ГК на бусинки полиакриламида. Реакционная смесь содержит пмГКС, несущий радиоактивную метку UDP-(14C)GlcUA и UDP-(3H)GlcNAc, а также различные иммобилизованные праймеры сахаров (акцепторы, соединенные восстановительным аминированием в аминобусины) были представлены. Бусинки были промыты и радиоактивно инкорпорированы на другие бусины, измеренные методом расчета жидкостной сцинтилляции. ГК цепи были привиты на пластиковые бусины при использовании подходящего праймера и пмГКС.

Иллюстрация 4. Схематическое изображение привитых полисахаридных структур. ГК синтаза вида Pasteurella или хондроитин синтаза будут удлиннять определенные другие полимеры на невосстанавливающемся конце in vitro, чтобы сформировать новые химерные глюкозаминогликаны. Изображены некоторые примеры.

Синтез монодисперсной ГК и ГК-связанных олигосахаридов

В дополнение к добавлению большой полимерной ГК цепи к молекулам акцептора, пмГКС синтезируют определенные меньшие ГК олигосахариды в диапазоне от 5 до 24 сахаров. Используя фермент дикого типа и различные условия реакции, был относительно легко получен ГК олигосахарид, содержащий 4 или 5 моноахаридов, удлиненных несколькими сахарами до более длинных версий, которые очень часто трудно получить в больших количествах. Мы выяснили, что, комбинируя растворимый мутант GlcUA-Tase и растворимый мутант GlcNAc-Tase в той же самой смеси реакции позволяет формирование ГК полимера, если система снабжена акцептором. В течение 3-х минут была сделана цепь из примерно 150 сахаров (-30 кДа). Любая одиночная мутант-синтаза не сформирует в результате цепь ГК. Поэтому, если дальнейший контроль реакции сделан путем выборочного комбинирования различных ферментов, UDP-сахаров и акцепторов, то могут быть получены определенные монодисперсные олигосахариды (рис. 5).

Иллюстрация 5. Приготовление определенных олигосахаридов.
В этом примере, акцептор ГК тетрасахарид удлинняется одиночной хондроитин дисахаридной единицей, используя два шага с иммобилизованным мутантом синтазы вида Pasteurella (показано белыми стрелками). Изображенный продукт является новым гексасахаридом. Повторение цикла еще раз производит олигосахарид, два цикла формируют декасахарид, и т.д. Если акцептор был ранее соединен с другой молекулой (например препарат или лекарство), тогда новый конъюгат был бы удлиннен коротким ГК, хондроитином или гибридной цепью как и желательно.

Например, в одном воплощении, смесь UDP-GlcNAc, UDP-GlcUA и акцептора постоянно циркулирует через отдельные биореакторы с иммобилизованными мутант-синтазами, которые передают только одиночный сахар. С каждым циклом инкубации биореактора другая сахарная группа добавляется к акцептору, чтобы сформировать маленькие определенные ГК олигосахариды. Использование похожего пмЦС мутанта (например GalNAc-Tase) в одном из шагов позволило происходить формированию смешанных олигосахаридов при использовании UDP-GlcNAc. Биологическая активность и терапевтический потенциал маленьких ГК олигосахаридов - сложная область для исследования, которая потребует определенных, монодисперсных сахаров для однозначной интерпретации.

Заключение

Очевидно, существуют два различных класса ГК синтаз. Наиболее хорошо охарактеризован фермент класса II вида Рasteurella, удлинняющий цепь ГК повторяющимся присоединением одиночного сахара на невосстанавливающийся конец цепи ГК. Направление и способ работы синтаз класса I (стрептококковые, вирусные и ферменты позвоночных) остаются неясными. Относительно прикладных наук, способность пмГКС удлиннять экзогенно расположенные акцепторные молекулы полезна для создания новых молекул и/или устройств с потенциальным медицинским применением.